Advertisement

Cluster Computing

, Volume 22, Supplement 2, pp 4693–4702 | Cite as

Sparse multiband signal spectrum sensing with asynchronous coprime sampling

  • Yijiu ZhaoEmail author
  • Shuangman Xiao
Article

Abstract

Cognitive radio requires spectrum sensing over a broad frequency band and leads to a high sampling rate. In this paper, we propose an asynchronous coprime sampling technique for capturing and reconstructing of sparse multiband signals that occupy a small part of a given broad frequency band. The band locations of signal are not known a priori. In this proposed approach, we use a sub-Nyquist sampling rate by exploiting a low-dimensional representation of the original high-dimensional signal. A common input sparse multiband signal is digitized using a pair of uniform samplers, which are (not necessarily synchronously) clocked at coprime sampling rates. The captured samples are then re-sequenced and the multi-coset signal processing algorithm is employed. We derive the system model in the frequency domain, where the phase mismatch is compensated. Compared to the conventional multi-coset sampling, the proposed approach needs fewer samplers and does not require synchronous clock phase. Simulation results are provided to demonstrate the feasibility and effectiveness of the proposed asynchronous coprime sampling for sparse multiband signal.

Keywords

Coprime sampling Cognitive radio Multi-coset sampling Phase mismatch compensation Sparse multiband signal 

Notes

Acknowledgements

National Natural Science Foundation of China (Grant No. 61671114).

References

  1. 1.
    Mitola, J.: Cognitive radio for flexible mobile multimedia communications. In: Proceedings on (MoMuC’99) IEEE International Mobile Multimedia Communication Workshop, pp. 3–10 (1999)Google Scholar
  2. 2.
    McHenry, M.: NSF spectrum occupancy measurements project summary. Shared Spectrum Co., Vienna (2005)Google Scholar
  3. 3.
    Jiang, J., Sun, H., Baglee, D., Poor, V.: Achieving autonomous compressive spectrum sensing for cognitive radios. IEEE Trans. Veh. Technol. 65(3), 1281–1291 (2016)CrossRefGoogle Scholar
  4. 4.
    Clemencio, F.M.C., Loureiro, C.F.M., Correia, C.M.B.: An easy procedure for calibrating data acquisition systems using interleaving. IEEE Trans. Nucl. Sci. 54(4), 1227–1231 (2007)CrossRefGoogle Scholar
  5. 5.
    Ivchenko, V.G., Kalashnikov, A.N., Challis, R.E., Hayes-Gill, B.R.: High-speed digitizing of repetitive waveforms using accurate interleaved sampling. IEEE Trans. Instrum. Meas. 56(4), 1322–1328 (2007)CrossRefGoogle Scholar
  6. 6.
    Donoho, D.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Duarte, M.F., Baraniuk, R.G.: Spectral compressive sensing. Appl. Comput. Harmonic Anal. 35(1), 111–129 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Shi, G., Lin, J., Chen, X., Qi, F., Liu, D., Zhang, L.: UWB echo signal detection with ultra-low rate sampling based on compressed sensing. IEEE Trans. Circuits Syst. II 55(4), 379–383 (2008)CrossRefGoogle Scholar
  10. 10.
    Kirolos, S., Laska, J., Wakin, M., Duarte, M., Baron, D., Ragheb, T., Massoud, Y., Baraniuk, R.: Analog-to-information conversion via random demodulation. In: Proceedings on IEEE Dallas Circuits System Workshop (DCAS), Dallas, TX, pp. 71–74 (2006)Google Scholar
  11. 11.
    Tropp, J.A., Laska, J.N., Duarte, M.F., Romberg, J.K., Baraniuk, R.G.: Beyond Nyquist: efficient sampling of sparse bandlimited signals. IEEE Trans. Inform. Theory 56(1), 520–544 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mangia, M., Rovatti, R., Setti, G.: Rakeness in the design of analog-to-information conversion of sparse and localized signals. IEEE Trans. Circuits Syst. I 59(5), 1001–1014 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mishali, M., Eldar, Y.C.: From theory to practice: sub-Nyquist sampling of sparse wideband analog signals. IEEE J. Sel. Top. Signal Process. 4(2), 375–391 (2010)CrossRefGoogle Scholar
  14. 14.
    Mishali, M., Eldar, Y.C., Dounaevsky, O., Shoshan, E.: Xampling: analog to digital at sub-Nyquist rates. IET Circuits Devices Syst. 5(1), 8–20 (2011)CrossRefGoogle Scholar
  15. 15.
    Haque, T., Yazicigil, R.T., Pan, K.J.L., Wright, J., Kinget, P.R.: Theory and design of a quadrature analog-to-information converter for energy-efficient wideband spectrum sensing. IEEE Trans. Circuits Syst. I 62(2), 527–535 (2015)CrossRefGoogle Scholar
  16. 16.
    Zhao, Y., Hu, Y.H., Wang, H.: Enhanced random equivalent sampling based on compressed sensing. IEEE Trans. Instrum. Meas. 61(3), 579–586 (2012)CrossRefGoogle Scholar
  17. 17.
    Zhao, Y., Hu, Y.H., Liu, J.: Random triggering-based sub-Nyquist sampling system for sparse multiband signal. IEEE Trans. Instrum. Meas. 66(7), 1789–1797 (2017)CrossRefGoogle Scholar
  18. 18.
    Bai, L., Roy, S.: Compressive spectrum sensing using a bandpass sampling architecture. IEEE J. Emerg. Sel. Top. Circuits Syst. 2(3), 433–442 (2012)CrossRefGoogle Scholar
  19. 19.
    Fleyer, M., Linden, A., Horowitz, M., Rosenthal, A.: Multirate synchronous sampling of sparse multiband signals. IEEE Trans. Signal Process. 58(3), 1144–1156 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tzou, N., Bhatta, D., Muldrey Jr., B., Moon, T., Wang, X., Choi, H., Chatterjee, A.: Low cost sparse multiband signal characterization using asynchronous multi-rate sampling: algorithms and hardware. J. Electron. Test. 31(1), 85–98 (2015)CrossRefGoogle Scholar
  21. 21.
    Sun, H., Chiu, W.Y., Jiang, J., Nallanathan, A., Poor, H.V.: Wideband spectrum sensing with sub-Nyquist sampling in cognitive radios. IEEE Trans. Signal Process. 60(11), 6068–6073 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Venkataramani, R., Bresler, Y.: Optimal sub-Nyquist nonuniform sampling and reconstruction for multiband signals. IEEE Trans. Signal Process. 49(10), 2301–2313 (2001)CrossRefGoogle Scholar
  23. 23.
    Krieger, J., Kochman, Y., Wornell, G.: Design and analysis of multi-coset arrays. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3781–3785 (2013)Google Scholar
  24. 24.
    Weng, Z., Djuric, P.M.: A search-free DOA estimation algorithm for coprime arrays. Digit. Signal Process. 24(1), 27–33 (2014)CrossRefGoogle Scholar
  25. 25.
    Vaidyanathan, P.P., Pal, P.: Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 59(2), 573–586 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Scharf, L.L.: Statistical Signal Processing: Detection, Estimation, and Time Series Analysis. Addison-Wesley Publishing Co., Reading (1991)zbMATHGoogle Scholar
  27. 27.
    Mishali, M., Eldar, Y.C.: Blind multiband signal reconstruction: compressed sensing for analog signal. IEEE Trans. Signal Process. 57(3), 993–1009 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yousif, A.S., Haslett, J.W.: A fine resolution TDC architecture for next generation PET imaging. IEEE Trans. Nucl. Sci. 54(5), 1574–1582 (2007)CrossRefGoogle Scholar
  29. 29.
    Bresler, Y.: Spectrum-blind sampling and compressive sensing for continuous-index signals. In: Information Theory and Applications Workshop IEEE, pp. 547–554 (2008)Google Scholar
  30. 30.
    Abdulhay, E., Mohammed, M.A., Ibrahim, D.A., Arunkumar, N., Venkatraman, V.: Computer aided solution for automatic segmenting and measurements of blood leucocytes using static microscope images. J. Med. Syst. (2018).  https://doi.org/10.1007/s10916-018-0912-y CrossRefGoogle Scholar
  31. 31.
    Liu, C., Arunkumar, N.: Risk prediction and evaluation of transnational transmission of financial crisis based on complex network. Clust. Comput. (2018).  https://doi.org/10.1007/s10586-018-1870-3 CrossRefGoogle Scholar
  32. 32.
    Arunkumar, N., Kumar, K.R., Venkataraman, V.: Automatic detection of epileptic seizures using new entropy measures. J. Med. Imaging Health Info. 6(3), 724–730 (2016)CrossRefGoogle Scholar
  33. 33.
    Stephygraph, L.R., Arunkumar, N.: Brain-actuated wireless mobile robot control through an adaptive human-machine interface. Adv. Intell. Syst. Comput. 397, 537–549 (2016)Google Scholar
  34. 34.
    Malarkodi, M.P., Arunkumar, N., Venkataraman, V.: Gabor wavelet based approach for face recognition. Int. J. Appl. Eng. Res. 8(15), 1831–1840 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Automation EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations