Cluster Computing

, Volume 22, Supplement 2, pp 3771–3781 | Cite as

Enhancement of video streaming analysis using cluster-computing framework

  • Janani ArthanariEmail author
  • R. Baskaran


Video content analysis is an emerging technique to easily redact video footage for public disclosure and to identify events and objects in surveillance cameras. The proficiency of this analysis depends on various crucial parameters such as area under exposure, content of surveillance and prior knowledge on statistical tool to enhance the streaming. There is large computational overhead in handling the huge quantum of data in traditional machine learning approach. In these scenario, the big data framework aids as a platform to handle the large volume of unstructured data. There is tremendous developments on big data framework which make new research avenue in data processing methods and big data learning paradigms. The proposed model analyses video streaming of a live traffic scenario over cluster computing framework in order to detect the anomalies. A video analytics model is developed with Spark execution engine to enable the data processing comparatively faster.


Video Analytics Surveillance Data Analytics Cluster Computing Machine Learning 


  1. 1.
    Ling, L.I.U.: Computing infrastructure for big data processing. Front. Comput. Sci. 7(2), 165–170 (2013)Google Scholar
  2. 2.
    Suresh, A., Varatharajan, R.: Competent resource provisioning and distribution techniques for cloud computing environment. Cluster Comput. (2017). Google Scholar
  3. 3.
    Abrams, D., McDowall, S.: Video content analysis with effective response. IEEE Conference on Technology and Homeland Security, 57–63 (2007)Google Scholar
  4. 4.
    Rumbold, J.M., Pierscionek, B.K.: What are data? a categorization of the data sensitivity spectrum. Big Data Res. (2017). Google Scholar
  5. 5.
    Ong, Y., Tsang, I.W.: The emerging big dimensionality. IEEE Comp Int Mag 9(3), 14–26 (2014). Google Scholar
  6. 6.
    Eshel, R., Moses, Y.: Homography based multiple camera detection and tracking of people in a dense crowd. IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  7. 7.
    Liu, Honghai, Chen, Shengyong, Kubota, Naoyuki: Intelligent video systems and analytics: a survey. IEEE Trans. Industr. Inf. 9, 1222–1233 (2013)Google Scholar
  8. 8.
    Bhattacharya, A., Bhatnagar, S.: Big data and apache spark a review. Int. J. Eng. Res. Sci. 2(5), 206 (2016)Google Scholar
  9. 9.
    Assuncaoa, M.D., Calheiros, R.N., Bianchi, S., Marco, A.S., Netto, M.A., Buyya, R.: Big data computing and clouds: trends and future directions. J. Parallel Distrib. Comput. 79, 3–15 (2015)Google Scholar
  10. 10.
    Ramkrushna, C., Maheshwar, D., Haritha: Survey on high performance analytics of bigdata with Apache Spark. IEEE Explore (2017)Google Scholar
  11. 11.
    Priya Ranjani, A.C., Sridhar, M.: Spark – an efficient framework for large scale data analytics. Int. J. Sci. Eng. Res. 7, 401–405 (2016)Google Scholar
  12. 12.
    Kalyan, P., Athanasios, Subbu, Vasilakos, V.: Big data for context aware computing – perspectives and challenges. Big Data Res. 10, 33–43 (2017)Google Scholar
  13. 13.
    Singh, P., Anand, S., Sagar, B.M.: Big data analysis with apache spark. Int. J. Comput. Appl. 175, 6–8 (2017)Google Scholar
  14. 14.
    Gandomi, Amir, Haider, Murtaza: Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manage. 35, 137–144 (2014)Google Scholar
  15. 15.
    Che, Dunren, Safran, Mejdl, Peng, Zhiyong: From big data to big data mining: challenges, issues, and opportunities. Int. Conf. Database Syst. Adv. Appl. 7827, 1–15 (2013)Google Scholar
  16. 16.
    Candamo, J., Shreve, M., Goldgof, D.B., Sapper, D.B., Kasturi, R.: Understanding transit scenes: a survey on human behavior-recognition algorithms. IEEE Trans. Intell. Transport. Syst. 11, 206–224 (2010)Google Scholar
  17. 17.
    Yao Lu, Aakanksha Chowdhery, Srikanth Kandula: VisFlow: A Relational Platform for Efficient Large-Scale Video Analytics. Tech Report, Microsoft Research (2016)Google Scholar
  18. 18.
    Suresh, A., Reyana, A., Varatharajan, R.: CEMulti-core architecture for optimization of energy over heterogeneous environment with high performance smart sensor devices. Wireless Pers. Commun. (2018). Google Scholar
  19. 19.
    Chinnasamy, A., Sivakumar, B., Selvakumari, P., Suresh, A.: Minimum connected dominating set based RSU allocation for smart cloud vehicles in VANET. Cluster Comput. (2018). Google Scholar
  20. 20.
    Wanga, Y., Liu, J., Li, Y., Fua, J., Xu, M., Lu, H.: Hierarchically supervised deconvolutional network for semantic video segmentation. Pattern Recog. 64, 437–445 (2017)Google Scholar
  21. 21.
    Gupta, Preeti, Sharma, Arun, Jindal, Rajni: Scalable machine-learning algorithms for big data analytics: a comprehensive review. Data Min. Knowl. Discov. 6, 194–214 (2016). Google Scholar
  22. 22.
    Chen, C., Yan, Y., Huang L.: Implementing a distributed volumetric data analytics toolkit on apache spark. In: Scientific Data Summit (NYSDS), IEEE Explore, New York (2017)Google Scholar
  23. 23.
    Shoro, A.G., Soomro, T.R.: Big data analysis: a spark perspective. Global J. Comput. Sci. Technol. 15, 6–14 (2015)Google Scholar
  24. 24.
    Mohebi, A., Aghabozorgi, S., Ying Wah, T., Herawan, T., Yahyapour, R.: Iterative big data clustering algorithms a review. J. Softw. 46, 107–129 (2016)Google Scholar
  25. 25.
    Zhuolin Qiu, Bin Wu, Bai Wang, Chuan Shi, Le Yu: Collapsed Gibbs Sampling for Latent Dirichlet Allocation on Spark. JMLR: Workshop and Conference Proceedings, 17–28 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Information TechnologyLoyola-ICAM College of Engineering and Technology Loyola College CampusChennaiIndia
  2. 2.Department of Computer Science, College of Engineering GuindyAnna UniversityChennaiIndia

Personalised recommendations