Cuckoo, Bat and Krill Herd based k-means++ clustering algorithms

  • Shruti Aggarwal
  • Paramvir SinghEmail author


Traditional k-means clustering algorithm is sensitive to the choice of initial cluster centers and leads to local optimal results. k-means++ is a hybrid k-means clustering algorithm which specifies the procedure to initialize the cluster centers before proceeding with the standard k-means algorithm. Inspired by nature, some contemporary optimization techniques such as Cuckoo, Bat and Krill Herd algorithms etc., are used for optimization as they mimic the swarming behaviour and allows to cooperatively move towards an optimal objective within a reasonable time. In this paper, these nature-inspired techniques are used for optimizing k-means++ clustering algorithm to enhance clustering quality and generate new hybrids of unprecedented performance. The results of the evaluation experiments on the integration of nature-inspired optimization methods with k-means++ algorithm are reported.


k-means k-means++ Nature inspired algorithms Swarm based techniques Cuckoo search algorithm Bat algorithm Krill Herd algorithm 


  1. 1.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM comput. Surv. (CSUR). 31, 264–323 (1999)CrossRefGoogle Scholar
  2. 2.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)Google Scholar
  3. 3.
    Zang, H., Zhang, S., Hapeshi, K.: A review of nature-inspired algorithms. J. Bionic Eng. 7, 232–237 (2010). CrossRefGoogle Scholar
  4. 4.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS’95, pp. 39–43 (1995)Google Scholar
  5. 5.
    Maniezzo, A.C.: Distributed optimization by ant colonies. In: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, Mit Press, pp. 134–152 (1992)Google Scholar
  6. 6.
    Yang, X.S., Deb, S.: Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 101–111. Springer, Berlin (2010)Google Scholar
  7. 7.
    Chakraborty, A., Kar, A.K.: Swarm intelligence: a review of algorithms. In: Nature-Inspired Computing and Optimization, pp. 475–494. Springer, Berlin (2017)Google Scholar
  8. 8.
    de Amorim, R.C., Makarenkov, V.: Applying subclustering and L p distance in Weighted K-Means with distributed centroids. Neurocomputing 173, 700–707 (2016)CrossRefGoogle Scholar
  9. 9.
    Jothi, R., Mohanty, S.K., Ojha, A.: On careful selection of initial centers for k-means algorithm. In: Proceedings of 3rd International Conference on Advanced Computing, Networking and Informatics, pp. 435–445. Springer, New Delhi (2016)Google Scholar
  10. 10.
    Sawaqed, L., AlShabi, M., Alshaer, S., Salameh, I.: An improved k-means clustering algorithm for two half-moon classification. In: IEEE 10th International Symposium on Mechatronics and its Applications (ISMA), pp. 1–4 (2015)Google Scholar
  11. 11.
    Ayech, M.W., Ziou, D.: Segmentation of Terahertz imaging using k-means clustering based on ranked set sampling. Expert. Syst. Appl. 42(6), 2959–2974 (2015)CrossRefGoogle Scholar
  12. 12.
    Dhillon, I.S., Guan Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 551-556. ACM (2004)Google Scholar
  13. 13.
    Singh, R.V., Bhatia, M.P.S.: Data clustering with modified k-means algorithm. In: 2011 International Conference on Recent Trends in Information Technology (ICRTIT), pp. 717–721. IEEE (2011)Google Scholar
  14. 14.
    Bhavani, R., Sadasivam, G.S., Kumaran, R.: A novel parallel hybrid k-means-DE-ACO clustering approach for genomic clustering using MapReduce. In: World Congress on Information and Communication Technologies (WICT), pp. 132–137 (2011)Google Scholar
  15. 15.
    Mahdavi, M., Abolhassani, H.: Harmony k-means algorithm for document clustering. Data Min. Knowl. Discov. 18(3), 370–391 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, M.J., Ng, M.K., Cheung, Y.M. and Huang, J.Z.: Agglomerative fuzzy k-means clustering algorithm with selection of number of clusters. IEEE Trans. Knowl. Data Eng. 20(11), 1519–1534 (2008)CrossRefGoogle Scholar
  17. 17.
    Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACMSIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, pp. 1027–1035 (2007)Google Scholar
  18. 18.
    Fahim, A.M., Salem, A.M., Torkey, F.A., Ramadan, M.A.: An efficient enhanced k-means clustering algorithm. J. Zhejiang Univ. Sci. 7(10), 1626–1633 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang, Q., Couloigner, I.: A new and efficient k-medoid algorithm for spatial clustering. In: International Conference on Computational Science and Its Applications, pp. 181–189. Springer, Berlin, Heidelberg, (2005)Google Scholar
  20. 20.
    Ishioka, T.: Extended k-means with an efficient estimation of the number of clusters. Ouyou toukeigaku, 29(3), 141–149 (2000)CrossRefGoogle Scholar
  21. 21.
    Su, M.C., Chou, C.H.: A modified version of the k-means algorithm with a distance based on cluster symmetry. IEEE Trans. Pattern. Anal. Mach. Intell. 23(6), 674–680 (2001)CrossRefGoogle Scholar
  22. 22.
    Tang, R., Fong, S., Yang, X.S., Deb, S.: Integrating nature-inspired optimization algorithms to k-means clustering. In: Seventh International Conference on Digital Information Management (ICDIM), 2012, pp. 116–123. IEEE (2012)Google Scholar
  23. 23.
    Nayak, J., Kanungo, D.P., Naik, B., Behera, H.S.: Evolutionary improved swarm-based hybrid k-means algorithm for cluster analysis. In: Proceedings of the Second International Conference on Computer and Communication Technologies, pp. 343–352. Springer, New Delhi (2016)Google Scholar
  24. 24.
    Hatamlou, A., Abdullah, S., Nezamabadi-pour, H.: A combined approach for clustering based on k-means and gravitational search algorithms. Swarm Evolut. Comput. 6, 47–52 (2012)CrossRefGoogle Scholar
  25. 25.
    Ahmed, H., Shedeed, H.A., Hamad, S., Tolba, M.F.: On combining nature-inspired algorithms for data clustering. In: Handbook of Research on Machine Learning Innovations and Trends, pp. 826–855. IGI Global, Hershey (2017)Google Scholar
  26. 26.
    Yan, X., Liu, H., Zhu, Z., et al.: Hybrid genetic algorithm for engineering design problems. Cluster Comput. 20, 263 (2017). CrossRefGoogle Scholar
  27. 27.
    Meng, X., Dong, L., Li, Y., et al.: A genetic algorithm using K-path initialization for community detection in complex networks. Cluster Comput. 20, 311 (2017). CrossRefGoogle Scholar
  28. 28.
    Tran, D.C., Wu, Z.: A new approach of dynamic clustering based on particle swarm optimization and application in image segmentation. Comput. Inf. 36(3). (2017)
  29. 29.
    Hatamlou, A.: A Hybrid Bio-inspired Algorithm and its Application. Applied Intelligence, pp. 1–9. Springer, New York (2017)Google Scholar
  30. 30.
    Pei, J., Zhao, L., Dong, X., et al.: Effective algorithm for determining the number of clusters and its application in image segmentation. Cluster Comput. 20, 2845 (2017). CrossRefGoogle Scholar
  31. 31.
    Mohammed, A.J., Yusof, Y., Husni, H.: Gf-Clust: a nature-inspired algorithm for automatic text clustering. J. Inf. Commun. Technol. 15(1), 57–81 (2016)Google Scholar
  32. 32.
    Yazdani, M., Jolai, F.: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 3(1), 24–36 (2016)Google Scholar
  33. 33.
    Wen, F., Wang, X., Zhang, G.: Evolutionary-based automatic clustering method for optimizing multilevel network. Cluster Comput. 20, 3161 (2017). CrossRefGoogle Scholar
  34. 34.
    Siddique, N., Adeli, H.: Nature inspired computing: an overview and some future directions. Cogn. Comput. 7(6), 706–714 (2015). CrossRefGoogle Scholar
  35. 35.
    Yang, X.S., Deb, S.: Cuckoo Search via Lévy flights. In: Proceedings of the IEEE World Congress on Nature & Biologically Inspired Computing, NaBIC, pp. 210–214 (2009)Google Scholar
  36. 36.
    Yang, X.S.: A new metaheuristic Bat inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010), pp. 65–74. Springer, Berlin (2010)Google Scholar
  37. 37.
    Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Fong, Simon, Deb, Suash, Yang, Xin-She, Zhuang, Yan: Towards enhancement of performance of k-means clustering using nature-inspired optimization algorithms. Sci. World J (2014). Google Scholar
  39. 39.
    Saida, I.B., Nadjet, K., Omar, B.: A new algorithm for data clustering based on cuckoo search optimization. In: Genetic and Evolutionary Computing, pp. 55-64. Springer, Cham, 2014.Google Scholar
  40. 40.
    Fister, I., Fong, S., Brest, J., Fister, I.: A novel hybrid self-adaptive Bat algorithm. Sci. World J. (2014). Google Scholar
  41. 41.
    Komarasamy, G., Wahi, A.: An optimized k-means clustering technique using bat algorithm. Eur. J. Sci. Res. 84(2), 263–273 (2012)Google Scholar
  42. 42.
    Nikbakht, H., Mirvaziri, H.: A new clustering approach based on k-means and Krill Herd algorithm. In: IEEE 23rd Iranian Conference on Electrical Engineering (ICEE), pp. 662–667 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of CSESri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  2. 2.Department of CSENational Institute of TechnologyJalandharIndia

Personalised recommendations