Advertisement

Cluster Computing

, Volume 22, Supplement 1, pp 661–671 | Cite as

Energy and cluster based efficient routing for broadcasting in mobile ad hoc networks

  • Sivakumar VenuEmail author
  • A. M. J. Md. Zubair Rahman
Article

Abstract

Mobile ad hoc network is momentarily forming the network without any base or centralized nodes. In general, AODV will find the best route from the basis to endpoint for transfer the data or message. In our proposed approach is Restricted Predictive Flooding based Ad hoc On-Demand Vector (RPFAODV) protocol. RPFAODV concentrate to identify the destination node, predict the route, based on the energy level at each node, end node address through route request packet and route response packet messages. After receiving route response packet from an end node to a source node, now it initialized as a cluster for transmission of data packet towards a destination. In this proposed protocol is restricted unwanted node traversal by predicting the route from the network. It can broadcast the data or message from destination to nodes cover in their surroundings of other network broadcast area. It produces better performance compare with another prevailing routing protocol. In this paper RPFAODV protocol as well as reactive protocols AODV were studied and their individualities with admiration to different movement are evaluated based on message delivery rate, end-to-end delay, number of packets dropped and throughput using network simulator (NS2).

Keywords

RPFAODV AODV Broadcasting MANETs Routing algorithm Mobile ad hoc routing protocol 

References

  1. 1.
    Kumar, C.N., Satyanarayana, N.: Multipath QoS routing for traffic splitting in MANETs. In: International Conference on Intelligent Computing, Communication & Convergence, Procedia Computer Science, vol. 48, pp. 414–426 (2015).  https://doi.org/10.1016/j.procs.2015.04.115
  2. 2.
    Abdallah, A.E.: Smart partial flooding routing algorithms for 3D ad hoc networks. In: 11th International Conference on Future Networks and Communication (FNC-2016), Elsevier Procedia Computer Science, vol. 94, pp. 264–271 (2016)Google Scholar
  3. 3.
    Yadav, A.K., Tripathi, S.: Load balanced multicast routing protocol for wireless mobile ad-hoc network. In: Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT) (2015).  https://doi.org/10.1109/C3IT.2015.7060215
  4. 4.
    Som, D.S., Singh, D.: Performance analysis and simulation of AODV, DSR and TORA routing protocols in MANETs. Int. J. Recent Technol. Eng. (IJRTE). 1(3), 122–127 (2012)Google Scholar
  5. 5.
    Divya, M., Subasree, S., Sakthivel, N.K.: Performance analysis of efficient energy routing protocols in MANET. In: 3rd International Conference on Recent Trends in Computing 2015, Procedia Computer Science, vol. 57, pp. 890–897 (2015).  https://doi.org/10.1016/j.procs.2015.07.504
  6. 6.
    Aujla, G.S., Kang, S.S.: Comparative analysis of AODV, DSR, GRP, OLSR and TORA by varying number of nodes with FTP and HTTP applications over MANETs. Int. J. Comput. Appl. 65(2), 18–26 (2013)Google Scholar
  7. 7.
    Rekik, J.D., Baccouche, L., Ghézala, H.B.: Load-balancing and energy aware routing protocol for real-time flows in mobile ad-hoc networks. In: 7th International Wireless Communications and Mobile Computing Conference (2011).  https://doi.org/10.1109/IWCMC.2011.5982557
  8. 8.
    Li, P., Li, J., Huang, Z., Li, T., Gao, C.Z., Yiu, S.M., Chen, K.: Multi-key privacy-preserving deep learning in cloud computing. Futur. Gener. Comput. Syst. 74, 76–85 (2017).  https://doi.org/10.1016/j.future.2017.02.006 CrossRefGoogle Scholar
  9. 9.
    Raja, L., Baboo, C.D.S.S.: Comparative study of reactive routing protocol (AODV, DSR, ABR and TORA) in MANET. IJECS Int. J. Eng. Comput. Sci. 2(3), 707–718 (2013)Google Scholar
  10. 10.
    Kaur, H., Sahni, V., Bala, M.: A survey of reactive, proactive and hybrid routing protocols in MANET: a review, IJCSIT. Int. J. Comput. Sci. Inf. Technol. 4(3), 498–500 (2013)Google Scholar
  11. 11.
    Yang, H., Li, Z., Liu, Z.: Neural networks for MANET AODV: an optimization approach. Clust. Comput. 20(4), 3369–3377 (2017).  https://doi.org/10.1007/s10586-017-1086-y CrossRefGoogle Scholar
  12. 12.
    Jacob, J., Seethalakshmi, V.: Performance analysis and enhancement of routing protocol in MANET. IJMER Int. J. Mod. Eng. Res. 2(2), 323–328 (2012)Google Scholar
  13. 13.
    Li, J., Li, J., Chen, X., Jia, C., Lou, W.: Identity-based encryption with outsourced revocation in cloud computing. IEEE Trans. Comput. 64(2), 425–437 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Abolhasan, M., Wysocki, T., Dutkiewicz, E.: A review of routing protocols for mobile ad hoc networks. Ad hoc Netw. 2, 1–22 (2004).  https://doi.org/10.1016/S1570-8705(03)00043-X CrossRefGoogle Scholar
  15. 15.
    Singh, P., Rajput, R.: Performance comparison and analysis of AODV, OLSR and TORA using jelly fish attack under MANET. IJERT Int. J. Eng. Res. Technol. 3(9), 603–606 (2014)Google Scholar
  16. 16.
    Singh, P., Bhola, A., Jha, C.K.: Simulation based behavioural study of AODV, DSR, OLSR and TORA routing protocols MANET. Int. J. Comput. Appl. 67(23), 23–26 (2013)Google Scholar
  17. 17.
    Rajasekar, S., Subramani, A.: A review on routing protocols for mobile Adhoc networks. i-manager’s J. Mobile Appl. Technol. 3(1), 39–46 (2016)Google Scholar
  18. 18.
    Singh, R., Singh, P., Duhan, M.: An effective implementation of security based algorithmic approach in mobile adhoc networks. Hum-centric Comput. Inf. Sci. 4(1), 7 (2014).  https://doi.org/10.1186/s13673-014-0007-9 CrossRefGoogle Scholar
  19. 19.
    Bourasi, R., Sahu, S.: Detection and removal of packet dropper nodes for congestion control over the MANET. Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. 1(2), 55–63 (2013)Google Scholar
  20. 20.
    Rishi, P.J., Manjula, R.B., Manvi, S.S.: A survey of mobile ad-hoc network protocols from mobility point of view. Int. J. Technol. Res. Eng. Res. 2(8), 1358–1364 (2015)Google Scholar
  21. 21.
    Satheeshkumar, S., Sengottaiyan, N.: Defending against jellyfish attacks using cluster based routing protocol for secured data transmission in MANET. Clust. Comput. (2017).  https://doi.org/10.1007/s10586-017-1202-z Google Scholar
  22. 22.
    Garg, S.: Performance analysis of AODV and TORA under DDoS attack in MANETs. IJSR Int J Sci Res. 3(10), 297–304 (2014)Google Scholar
  23. 23.
    Kumaran, S.T., Sankaranarayanan, V.: Early congestion detection and adaptive routing in MANET. Egypt. Inf. J. 12, 165–175 (2011).  https://doi.org/10.1016/j.eij.2011.09.001 CrossRefGoogle Scholar
  24. 24.
    Shivashankar, H.N.S., Varaprasad, G., Jayanthi, G.: Designing energy routing protocol with power consumption optimization in MANET. IEEE Trans. Emerg. Topics Comput. 2(2), 192–197 (2014)CrossRefGoogle Scholar
  25. 25.
    Li, P., Li, J., Huang, Z., Gao, C.Z., Chen, W.B., Chen, K.: Privacy-preserving outsourced classification in cloud computing. Clust. Comput. (2017).  https://doi.org/10.1007/s10586-017-0849-9 Google Scholar
  26. 26.
    Wankhade, S., Tapre, R.: Performance analysis of routing protocols for mobile ad-hoc networks. Int. J. Sci. Eng. Res. 4(12), 5–11 (2013)Google Scholar
  27. 27.
    Shefali Goyal, P.S.: A survey based comparative study of DSR and AODV routing protocols in ad-hoc network using NS-2. NIET J. Eng. Technol. 1(2), 29–31 (2013)Google Scholar
  28. 28.
    Sivakumar, V., Preethi, J.: TORA and AODV based broadcasting in mobile ad hoc networks. CiiT. Int. J. Digit. Signal Process. 3(1), 31–36 (2011)Google Scholar
  29. 29.
    Sivakumar, V., Zubair Rahman, AMJMd, Vanitha, K.: Efficient routing for broadcasting in mobile ad hoc networks. Int. J. Appl. Eng. Res. 9(27), 9546–9552 (2014). (Special Issues) Google Scholar
  30. 30.
    Sri, T.S., Prasad, J.R., Kumar, R.K.: SEE: synchronized efficient energy calculation for topology maintenance & power saving in ad hoc networks. Arab. J. Sci. Eng. (2018).  https://doi.org/10.1007/s13369-017-3043-8 Google Scholar
  31. 31.
    Thirukrishna, J.T., Karthik, S., Arunachalam, V.P.: Revamp energy efficiency in homogeneous wireless sensor networks using optimized radio energy Algorithm (OREA) and power-aware distance source routing protocol. Futur. Gener. Comput. Syst. 81, 331–339 (2018).  https://doi.org/10.1016/j.future.2017.11.042 CrossRefGoogle Scholar
  32. 32.
    Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., Ye, H.: Significant permission identification for machine learning based android malware detection. In: IEEE Transactions on Industrial Informatics, IEEE (2018)Google Scholar
  33. 33.
    Wu, H., Wang, J., Ananta, R.R., Kommareddy, V.R., Wang, R., Mohapatra, P.: Prediction based opportunistic routing for maritime search and rescue wireless sensor network. J. Parallel Distrib. Comput. 111, 56–64 (2018).  https://doi.org/10.1016/j.jpdc.2017.06.021 CrossRefGoogle Scholar
  34. 34.
    Hu, Y.C., Johnson, D.B., Perrig, A.: SEAD: secure efficient distance vector routing for mobile wireless ad hoc networks. Ad hoc Netw. 1, 175–192 (2003).  https://doi.org/10.1016/S1570-8705(03)00019-2 CrossRefGoogle Scholar
  35. 35.
    Li, J., Zhang, Y., Chen, X., Xiang, Y.: Secure attribute-based data sharing for resource-limited users in cloud computing. Comput. Secur. 72, 1–12 (2018).  https://doi.org/10.1016/j.cose.2017.08.007 CrossRefGoogle Scholar
  36. 36.
    Gupta, M., Kaushik, S.: Performance comparison study of AODV, OLSR and TORA routing protocols for MANETs. IJCER Int. J. Comput. Eng. Res. 2(3), 704–711 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Anna UniversityChennaiIndia
  2. 2.Al-Ameen Engineering College, ErodeAffiliated to Anna UniversityChennaiIndia

Personalised recommendations