Cluster Computing

, Volume 22, Supplement 6, pp 14107–14124 | Cite as

An adaptive fuzzy filter for image denoising

  • Weiping Zhang
  • Mohit Kumar
  • Jingzhi Yang
  • Yunfeng Zhou
  • Yihua MaoEmail author


This study considers the problem of fuzzy modeling of the images in pixel domain. A zero-order Takagi–Sugeno type fuzzy model provides fuzzy smoothing to the image intensities for removing the additive noise from an image. An adaptive fuzzy filtering algorithm is suggested for estimating the parameters of the fuzzy model with noisy image data. The mathematical analysis of the proposed filtering algorithm has been provided in both deterministic and stochastic framework. The deterministic robustness of the filtering algorithm was shown by deriving an upper bound on the magnitude of estimation errors. The fuzzy filtering algorithm doesn’t demand Gaussian assumption of the noise and is also optimal in the “sense” of variation Bayes towards Student-t distributed noises.


Adaptive fuzzy filtering Robustness Image denoising Variational Bayes Student-t distribution 



Funding was provided by National Natural Science Foundation of China (ID0EQOAE4397).


  1. 1.
    Choi, Y., Krishnapuram, R.: A robust approach to image enhancement based on fuzzy logic. IEEE Trans. Image Process. 6(6), 808–825 (1997)CrossRefGoogle Scholar
  2. 2.
    Lee, C.S., Kuo, Y.H., Yu, P.T.: Weighted fuzzy mean filters for image processing. Fuzzy Sets Syst. 89(2), 157–180 (1997)CrossRefGoogle Scholar
  3. 3.
    Russo, F., Ramponi, G.: A fuzzy operator for the enhancement of blurred and noisy images. IEEE Trans. Image Process. 4(8), 1169–1174 (1995)CrossRefGoogle Scholar
  4. 4.
    Russo, F., Ramponi, G.: A fuzzy filter for images corrupted by impulse noise. IEEE Signal Process. Lett. 3(6), 168–170 (1996)CrossRefGoogle Scholar
  5. 5.
    Schulte, S., Witte, V.D., Kerre, E.E.: A fuzzy noise reduction method for color images. IEEE Trans. Image Process. 16(5), 1425–1436 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ville, D.V.D., Nachtegael, M., Weken, D.V., Kerre, E.E., Philips, W., Lemahieu, I.: Noise reduction by fuzzy image filtering. IEEE Trans. Fuzzy Syst. 11(4), 429–436 (2003)CrossRefGoogle Scholar
  7. 7.
    Wong, A., Mishra, A., Bizheva, K., Clausi, D.A.: General bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery. Optics Express 18(8), 8338–8352 (2010)CrossRefGoogle Scholar
  8. 8.
    Pižurica, A., Philips, W., Lemahieu, I., Acheroy, M.: A joint inter- and intrascale statistical model for bayesian wavelet based image denoising. IEEE Trans. Image Process. 11(5), 545–557 (2002)CrossRefGoogle Scholar
  9. 9.
    Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denosing using scale mixtures of gaussians in the Wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Şendur, L., Selesnick, I.W.: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Process. 50(11), 2744–2756 (2002)CrossRefGoogle Scholar
  11. 11.
    Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image Vis. Comput. 22(1), 73–81 (2004)CrossRefGoogle Scholar
  12. 12.
    Awate, S.P., Whitaker, R.T.: Unsupervised, information-theoretic, adaptive image filtering for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 364–376 (2006)CrossRefGoogle Scholar
  13. 13.
    Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Plenum, New York (1981)CrossRefGoogle Scholar
  14. 14.
    Burger, M., Haslinger, J., Bodenhofer, U.: Regularized data-driven construction of fuzzy controllers. J. Inverse Ill-Posed Probl. 10, 319–344 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chuang, C.C., Su, S.F., Chen, S.S.: Robust TSK fuzzy modeling for function approximation with outliers. IEEE Trans. Fuzzy Syst. 9(6), 810–821 (2001)CrossRefGoogle Scholar
  16. 16.
    Hong, X., Harris, C.J., Chen, S.: Robust neurofuzzy rule base knowledge extraction and estimation using subspace decomposition combined with regularization and D-optimality. IEEE Trans. Syst. Man. Cybern. B 34(1), 598–608 (2004)CrossRefGoogle Scholar
  17. 17.
    Johansen, T.: Robust identification of Takagi-Sugeno-Kang fuzzy models using regularization. In: Proceedings of IEEE Conference on Fuzzy Systems, pp. 180–186. New Orleans, USA (1996)Google Scholar
  18. 18.
    Juang, C.F., Hsieh, C.D.: TS-fuzzy system-based support vector regression. Fuzzy Sets Syst. 160(17), 2486–2504 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Juang, C.F., Huang, R.B., Cheng, W.Y.: An interval type-2 fuzzy-neural network with support-vector regression for noisy regression problems. IEEE Trans. Fuzzy Syst. 18(4), 686–699 (2010)CrossRefGoogle Scholar
  20. 20.
    Kim, J., Suga, Y., Won, S.: A new approach to fuzzy modeling of nonlinear dynamic systems with noise: relevance vector learning mechanism. IEEE Trans. Fuzzy Syst. 14(2), 222–231 (2006)CrossRefGoogle Scholar
  21. 21.
    Kumar, M., Stoll, N., Stoll, R.: An energy-gain bounding approach to robust fuzzy identification. Automatica 42(5), 711–721 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kumar, M., Stoll, R., Stoll, N.: SDP and SOCP for outer and robust fuzzy approximation. In: Proceedings of 7th IASTED International Conference on Artificial Intelligence and Soft Computing. Banff, Canada (2003)Google Scholar
  23. 23.
    Kumar, M., Stoll, R., Stoll, N.: Robust adaptive identification of fuzzy systems with uncertain data. Fuzzy Optim. Decis. Mak. 3(3), 195–216 (2004)CrossRefGoogle Scholar
  24. 24.
    Kumar, M., Stoll, R., Stoll, N.: Robust solution to fuzzy identification problem with uncertain data by regularization. Fuzzy approximation to physical fitness with real world medical data: An application. Fuzzy Optim. Decis. Mak. 3(1), 63–82 (2004)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kumar, M., Stoll, R., Stoll, N.: Deterministic approach to robust adaptive learning of fuzzy models. IEEE Trans. Syst. Man. Cybern. B 36(4), 767–780 (2006)CrossRefGoogle Scholar
  26. 26.
    Kumar, M., Stoll, R., Stoll, N.: A min-max approach to fuzzy clustering, estimation, and identification. IEEE Trans. Fuzzy Syst. 14(2), 248–262 (2006)CrossRefGoogle Scholar
  27. 27.
    Kumar, M., Stoll, R., Stoll, N.: A robust design criterion for interpretable fuzzy models with uncertain data. IEEE Trans. Fuzzy Syst. 14(2), 314–328 (2006)CrossRefGoogle Scholar
  28. 28.
    Kumar, M., Weippert, M., Arndt, D., Kreuzfeld, S., Thurow, K., Stoll, N., Stoll, R.: Fuzzy filtering for physiological signal analysis. IEEE Trans. Fuzzy Syst. 18(1), 208–216 (2010). CrossRefGoogle Scholar
  29. 29.
    Leski, J.M.: TSK-fuzzy modeling based on \(\epsilon \)-insensitive learning. IEEE Trans. Fuzzy Syst. 13(2), 181–193 (2005)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wang, L., Mu, Z., Guo, H.: Fuzzy rule-based support vector regression system. J. Control Theory Appl. 3(3), 230–234 (2005)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wang, W.Y., Lee, T.T., Liu, C.L., Wang, C.H.: Function approximation using fuzzy neural networks with robust learning algorithm. IEEE Trans. Syst. Man. Cybern. B 27, 740–747 (1997)CrossRefGoogle Scholar
  32. 32.
    Yu, W., Li, X.: Fuzzy identification using fuzzy neural networks with stable learning algorithms. IEEE Trans. Fuzzy Syst. 12(3), 411–420 (2004)CrossRefGoogle Scholar
  33. 33.
    Kumar, M., Stoll, N., Stoll, R.: Adaptive fuzzy filtering in a deterministic setting. IEEE Trans. Fuzzy Syst. 17(4), 763–776 (2009)CrossRefGoogle Scholar
  34. 34.
    Kumar, M., Stoll, N., Stoll, R.: On the estimation of parameters of takagi-sugeno fuzzy filters. IEEE Trans. Fuzzy Syst. 17(1), 150–166 (2009)CrossRefGoogle Scholar
  35. 35.
    Kumar, M., Stoll, N., Stoll, R., Thurow, K.: A stochastic framework for robust fuzzy filtering and analysis of signals—Part I. IEEE Trans. Cybern. 46(5), 1118–1131 (2016). CrossRefGoogle Scholar
  36. 36.
    Kumar, M., Insan, A., Stoll, N., Thurow, K., Stoll, R.: Stochastic fuzzy modeling for ear imaging based child identification. IEEE Trans. Syst. Man Cybern. Syst. 46(9), 1265–1278 (2016). CrossRefGoogle Scholar
  37. 37.
    Kumar, M., Mao, Y., Wang, Y., Chenggen, Y., Zhang, W.: Fuzzy theoretic approach to signals and systems: static systems. Inf. Sci. 418, 668–702 (2017). CrossRefGoogle Scholar
  38. 38.
    Attias, H.: A variational Bayesian framework for graphical models. In: In Advances in Neural Information Processing Systems 12, pp. 209–215. MIT Press, Cambridge (2000)Google Scholar
  39. 39.
    Beal, M.J.: Variational algorithms for approximate Bayesian inference. Ph.D. thesis, The Gatsby Computational Neuroscience Unit, University College London, London, UK (2003)Google Scholar
  40. 40.
    Lappalainen, H., Miskin, J.W.: Ensemble learning. Advances in Independent Component Analysis. Springer, Berlin (2000)Google Scholar
  41. 41.
    Christmas, J., Everson, R.: Robust autoregression: Student-t innovations using variational Bayes. IEEE Trans. Signal Process. 59(1), 48–57 (2011)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Tipping, M.E., Lawrence, N.D.: Variational inference for Student-t models: Robust Bayesian interpolation and generalised component analysis. Neurocomputing 69, 123–141 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Weiping Zhang
    • 1
  • Mohit Kumar
    • 2
    • 4
  • Jingzhi Yang
    • 2
  • Yunfeng Zhou
    • 3
  • Yihua Mao
    • 3
    Email author
  1. 1.Department of Electronic Information EngineeringNanchang UniversityNanchangChina
  2. 2.Binhai Industrial Technology Research Institute of Zhejiang UniversityTianjinChina
  3. 3.Zhejiang University College of Civil Engineering and ArchitectureHangzhouChina
  4. 4.Faculty of Computer Science and Electrical EngineeringUniversity of RostockRostockGermany

Personalised recommendations