Cluster Computing

, Volume 22, Supplement 4, pp 9397–9406 | Cite as

Null-space based facial classifier using linear regression and discriminant analysis method

  • D. Venkata Vara PrasadEmail author
  • Suresh Jaganathan


In this paper, we proposed a novel classification method for face recognition which adopts the functionalities of linear discriminant and regression. Linear discriminant and regression analysis methods have benefits regarding minimising time, memory usage and better feature extraction. Linear regression and discriminant classification (LRDC) makes use of the principle that a sample class lie in a linear subspace, proposed method represents a predicted image as a linear combination of class-specific galleries. LRDC belongs to the category of nearest subspace classification and finds the set of optimal discriminant projection vectors by adopting singular value decomposition (SVD) and null space, and the decision made for a class with the minimum distance. LRDC is extensively evaluated by applying it to different classified datasets and compared with the state-of-the-art algorithms.


Classification Discriminant analysis Regression analysis Small sample size Face recognition Null space 


  1. 1.
    Ragul, G., Magesh Kumar, C., Thiyagarajan, R., Mohan, R.: Comparative study of statistical models and classifiers in face recognition. In: Proceedings of IEEE International Conference on Information Communication and Embedded Systems (ICICES), pp. 623–628 (2013).
  2. 2.
    Witten, Ian H., Frank, Eibe, Hall, MarkA, Pal, Chirstopher J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2005). ISBN 978-0-12-804291-5zbMATHGoogle Scholar
  3. 3.
    Larose, D.T.: k-nearest neighbour algorithm. In: Discovering Knowledge in Data: An Introduction to Data Mining, pp. 90–106 (2005).
  4. 4.
    Zhang, N., Yang, J., Qian, J.: Component-based global K-NN classifier for small sample size problems. Pattern Recogn. Lett. 33(13), 1689–1694 (2012)Google Scholar
  5. 5.
    Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010)Google Scholar
  6. 6.
    Li, M., Yuan, B.: 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recogn. Lett. 26(5), 527–532 (2005)Google Scholar
  7. 7.
    Gu, Q., Li, Z., Han, J.: Linear discriminant dimensionality reduction. In: Chapter Machine Learning and Knowledge Discovery in Databases. LNCS, vol. 6911, pp. 549–564 (2011).
  8. 8.
    Mi, J.-X., Liu, J.-X., Wen, J.: New robust face recognition methods based on linear regression. PLoS ONE 7(8), 1–10 (2012). Google Scholar
  9. 9.
    Bhattacharyya, S.K., Rahul, K.: Face recognition by linear discriminant analysis. Int. J. Commun. Netw. Secur. 2(2), 31–35 (2013)Google Scholar
  10. 10.
    Chang, C.Y., Chuan-Wang, C., Hsieh, C.Y.: Applications of blocklinear discriminant analysis for face recognition. J. Inf. Hiding Multimed. Signal Processing 2(3), 259–269 (2011)Google Scholar
  11. 11.
    Liu, J., Chen, S., Tan, X.: A study on three linear discriminant analysis based methods in small sample size problem. Pattern Recogn. 41(1), 102–116 (2008)zbMATHGoogle Scholar
  12. 12.
    Ye, J., Xiong, T.: Computational and theoretical analysis of null space and orthogonal linear discriminant analysis. J. Mach. Learn. Res. 7, 1183–1204 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Wang, B., Li, W., Li, Z., Liao, Q.: Adaptive linear regression for single-sample face recognition. Neurocomputing 115, 186–191 (2013)Google Scholar
  14. 14.
    Jaganathan, S., Stepan, P.: Linear regression for pattern recognition. In: IEEE Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), pp. 1–6 (2014).
  15. 15.
    Zhong, J., Yi, C.: Reconstructive discriminant analysis: a feature extraction method induced from linear regression classification. Neurocomputing 87, 41–50 (2012)Google Scholar
  16. 16.
    Delin, C., Thye, G.S.: A new and fast implementation for null space-based linear discriminant analysis. Pattern Recogn. 43(4), 1373–1379 (2009). zbMATHGoogle Scholar
  17. 17.
    Lua, G.-F., Zheng, W.: Complexity-reduced implementations of complete and null-space-based linear discriminant analysis. Neural Netw. 46, 165–171 (2013). Google Scholar
  18. 18.
    Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: Proceedings of 2nd IEEE Workshop on Applications of Computer Vision, Sarasota, FL (1994)Google Scholar
  19. 19.
    Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science & EngineeringSSN College of EngineeringChennaiIndia

Personalised recommendations