Cluster Computing

, Volume 22, Supplement 1, pp 2159–2167 | Cite as

Parameter estimation of P-III distribution based on GA using rejection and interpolation mechanism

  • Wei SheEmail author
  • Dingfang Li
  • Yongbo Xia
  • Shasha Tian


This paper studied the genetic algorithm (GA) deeply for the problem of hydrological frequency parameter estimation of P-III distribution. For simple GA, the convergence speed and global searching ability are contradictory. An improved algorithm named GA using rejection and interpolation mechanism (GA-RIM) are proposed. Firstly, the rejection mechanism is adopted to ensure the diversity of population and avoid useless operations. Secondly, the strategy of preserving excellent individual is used to guarantee the population to converge to the optimal solution. Thirdly, interpolation mechanism is used to ensure the population to explore in the total domain of definition and mutate adaptively according the diversity of population. The GA-RIM, GA and other four usual methods are used to estimate hydrological parameter of two examples. Through simulation experiments, it was found that the GA-RIM is superior than GA and other methods in terms of convergence speed, precision and global searching ability.


Parameter estimation P-III distribution Genetic algorithm Rejection mechanism Interpolation mechanism 



The authors acknowledge the National Natural Science Foundation of China (Grant: 61603419), the National Natural Science Foundation of China (Grant: 61771021).


  1. 1.
    Lei, G., Wang, W., Yin, J., et al.: Review on study of parameter estimation method on P-III Curve. Yellow Riv. 39(10), 1–7 (2017)Google Scholar
  2. 2.
    Huang, Z., Lin, X., Hou, Y.: Moment estimation for parameters of Pearson Type-III distribution and calculated frequency of design flood. J. Hohai Univ. (Nat. Sci.) 33(1), 49–51 (2005)Google Scholar
  3. 3.
    Brighenti, R., Carpinteri, A., Macha, E., et al.: Weight function method for determination of critical plane position under multiaxial loading. Thermochim. Acta 338(s1–s2), 85–94 (2013)Google Scholar
  4. 4.
    Kawabata, S., Shimizu, Y., Sumino, Y., et al.: Weight function method for precise determination of top quark mass at Large Hadron Collider. Phys. Lett. B 741, 232–238 (2015)CrossRefGoogle Scholar
  5. 5.
    Yuan, X.: Estimation methods of P-III distribution parameter based on partial probability weighted moments. Yangtze Riv. 46(13), 25–28 (2015)Google Scholar
  6. 6.
    Li, M., Lin, B., Shao, Y., et al.: Study on spatial continuity of precipitation quantile estimates based on regional L-moments analysis. J. China Hydrol. 35(4), 14–19 (2015)Google Scholar
  7. 7.
    Busababodhin, P., Yun, A.S., Park, J.S., et al.: LH-moment estimation of Wakeby distribution with hydrological applications. Stoch. Env. Res. Risk Assess. 30(6), 1757–1767 (2016)CrossRefGoogle Scholar
  8. 8.
    Ma, H., Zhao, D., Zhu, B.: Comparison of several parameter estimation methods for hydrological frequency curve. Yellow Riv. 38(3), 9–11 (2016)Google Scholar
  9. 9.
    Noh, S.J., Choi, Y.S., Choi, C.K., et al.: Parameter estimation of a distributed hydrologic model using parallel PEST: comparison of impacts by radar and ground rainfall estimates. J. Korea Water Resour. Assoc. 46(11), 1040–1052 (2013)CrossRefGoogle Scholar
  10. 10.
    Tada, T.: Parameter optimization of hydrological model using the PSO algorithm. J. Jpn. Soc. Hydrol. Water Resour. 20(5), 450–461 (2007)CrossRefGoogle Scholar
  11. 11.
    Kamali, B., Mousavi, S.J., Abbaspour, K.C.: Automatic calibration of HEC-HMS using single-objective and multi-objective PSO algorithms. Hydrol. Process. 27(26), 4028–4042 (2013)CrossRefGoogle Scholar
  12. 12.
    Bowens, C., Dobie, K.H., Devin, C.J., et al.: A model-independent Particle Swarm Optimisation software for model calibration. Environ. Modell. Softw. 43(3), 5–25 (2013)Google Scholar
  13. 13.
    Wang, W., Lei, G., Liu, C.: Hydrologic frequency analysis using SSO algorithm. J. China Hydrol. 36(3), 34–39 (2016)Google Scholar
  14. 14.
    Tang, Y., Zhang, Y., Wang, H.: Optimization algorithm of hydrologic frequency parameters based on PSO-AGA. J. Beijing Univ. Technol. 42(6), 953–960 (2016)Google Scholar
  15. 15.
    Babu, K.: Comparison of PSO, AGA, SA and memetic algorithms for surface grinding optimization. Appl. Mech. Mater. 852, 241–247 (2016)CrossRefGoogle Scholar
  16. 16.
    Shang, X., Dong, W., Hydrosciences, D.O.: Parameter estimation in hydrologic frequency analysis using non-quantitative historical flood and Bayesian approach. J. Hydroelectr. Eng. 34(10), 35–41 (2015)Google Scholar
  17. 17.
    Wang, W., Lei, G., Liu, H., et al.: The adaptive numerical integral Pearson-III curve parameters estimation based on SSO. J. Basic Sci. Eng. 23(23), 122–133 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wei She
    • 1
    • 2
    Email author
  • Dingfang Li
    • 1
  • Yongbo Xia
    • 2
  • Shasha Tian
    • 3
  1. 1.School of Mathematics and StatisticWuhan UniversityWuhanChina
  2. 2.School of Mathematics and StatisticSouth-Central University for NationalitiesWuhanChina
  3. 3.College of Computer ScienceSouth-Central University for NationalitiesWuhanChina

Personalised recommendations