Advertisement

Cluster Computing

, Volume 22, Supplement 1, pp 391–398 | Cite as

A silhouette based novel algorithm for object detection and tracking using information fusion of video frames

  • Xiaoping Jiang
  • Jing SunEmail author
  • Hao Ding
  • Chenghua Li
Article
  • 97 Downloads

Abstract

Object detection and tracking has been gaining widespread interest and significance with rate of increase in technology towards development of new gadgets. From a continuous video locating a particular object and tracking it is a sequence of process which involves segmentation, preprocessing, extracting the features, finally clustering for recognizing the particular object. This research works highlights the maximum capability of results in order to detect and track the object using a set of algorithms for detection mixed along with the optimization algorithms for better computation time and minimum of errors. The proposed work exploits the contour extraction followed by computation of dissimilarity measure between two signals. A single video sequence partitioned into frames has been optimized for an efficient tracking as evident from the end results.

Keywords

Detection and tracking Contour extraction Point labelling Dissimilarity measure 

Notes

Funding

Funding was provided by National Natural Science Foundation of China (Grant Nos. 61402544, 61671484, 61702563).

References

  1. 1.
    Qi, Y., Soh, C.B., Gunawan, E., Low, K.S., Thomas, R.: Assessment of foot trajectory for object gait phase detection using wireless ultrasonic sensor network. IEEE Trans. Neural Syst. Rehabil. Eng. 24(1), 88–97 (2016)CrossRefGoogle Scholar
  2. 2.
    Bejarano, N.C., Ambrosini, E., Pedrocchi, A., Ferrigno, G., Monticone, M., Ferrante, S.: A novel adaptive real-time algorithm to detect gait events from wearable sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 23(3), 413–422 (2015)CrossRefGoogle Scholar
  3. 3.
    Panahandeh, G., Mohammadiha, N., Leijon, A., Handel, P.: Continuous hidden Markov model for pedestrian activity classification and gait analysis. IEEE Trans. Instrum. Meas. 62(5), 1073–1083 (2013)CrossRefGoogle Scholar
  4. 4.
    Chung, P.-C., Hsu, Y.-L., Wang, C.-Y., Lin, C.-W., Wang, J.-S., Pai, M.-C.: Gait analysis for patients with Alzheimer’s disease using a triaxial accelerometer. In: Proceedings of IEEE International Symposium Circuits Systems, pp. 1323–1326 (2012)Google Scholar
  5. 5.
    Lai, Z., Xu, Y., Chen, Q., Yang, J., Zhang, D.: Multilinear sparse principal component analysis. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1942–1950 (2014)CrossRefGoogle Scholar
  6. 6.
    Rampp, A., Barth, J., Schülein, S., Gaßmann, K.-G., Klucken, J., Eskofier, B.M.: Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients. IEEE Trans. Biomed. Eng. 62(4), 1089–1097 (2015)CrossRefGoogle Scholar
  7. 7.
    Iwama, H., Okumura, M., Makihara, Y., et al.: The ou-isir gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans. Inf. Forensics Sec. 7(5), 1511–1521 (2012)CrossRefGoogle Scholar
  8. 8.
    Demonceau, M., et al.: Contribution of a trunk accelerometer system to the characterization of gait in patients with mild-to-moderate Parkinson’s disease. IEEE J. Biomed. Health Inform. 19(6), 1803–1808 (2015)CrossRefGoogle Scholar
  9. 9.
    Weiss, M.J., Moran, M.F., Parker, M.E., Foley, J.T.: Gait analysis of teenagers and young adults diagnosed with autism and severe verbal communication disorders. Front. Integr. Neurosci. 7, 33 (2013)CrossRefGoogle Scholar
  10. 10.
    Pasluosta, C.F., Barth, J., Gassner, H., Klucken, J., Eskofier, B.M.: Pull test estimation in Parkinson’s disease patients using wearable sensor technology. In: Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3109–3112 (2015)Google Scholar
  11. 11.
    Qi, Y., Soh, C.B., Gunawan, E., Low, K.S., Maskooki, A.: A novel approach to joint flexion/extension angles measurement based on wearable UWB radios. IEEE J. Biomed. Health Inform. 18(1), 300–308 (2014)CrossRefGoogle Scholar
  12. 12.
    Sharma, A., Singh, A., Rohilla, R.: Color based object detection and tracking algorithm using a non-Gaussian adaptive Particle filter. In: 2016 3rd International Conference on Recent Advances in Information Technology (RAIT) (2016)Google Scholar
  13. 13.
    AzevedoCoste, C., Sijobert, B., Pissard-Gibollet, R., Pasquier, M., Espiau, B., Geny, C.: Detection of freezing of gait in Parkinson disease: preliminary results. Sensors 14(4), 6819–6827 (2014)CrossRefGoogle Scholar
  14. 14.
    Yu, M., Yu, Y., Rhuma, A., Naqvi, S., Wang, L., Chambers, J.: An online one class support vector machine based person-specific fall detection system for monitoring an elderly individual in a room environment. IEEE J. Biomed. Health Inform. 17(6), 1002–1014 (2013)CrossRefGoogle Scholar
  15. 15.
    Karg, M., Seiberl, W., Kreuzpointner, F., Haas, J., Kulic, D.: Clinical gait analysis: comparing explicit state duration HMMs using a reference-based index. IEEE Trans. Neural Syst. Rehabil. Eng. 23(2), 319–331 (2015)CrossRefGoogle Scholar
  16. 16.
    Yoneyama, M., Kurihara, Y., Watanabe, K., Mitoma, H.: Accelerometry-based gait analysis and its application to Parkinson’s disease assessment—Part 2: a new measure for quantifying walking behavior. IEEE Trans. Neural Syst. Rehabil. Eng. 21(6), 999–1005 (2013)CrossRefGoogle Scholar
  17. 17.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)Google Scholar
  18. 18.
    Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. arXiv preprint arXiv:1612.03144 (2016)
  19. 19.
    Ren, S., He, K., Girshick, R., Zhang, X., Sun, J.: Object detection networks on convolutional feature maps. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1476–1481 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoping Jiang
    • 1
  • Jing Sun
    • 1
    Email author
  • Hao Ding
    • 1
  • Chenghua Li
    • 1
  1. 1.College of Electronics and Information Engineering, Hubei Key Laboratory of Intelligent Wireless CommunicationsSouth-Central University for NationalitiesWuhanChina

Personalised recommendations