Advertisement

Cluster Computing

, Volume 22, Supplement 3, pp 6305–6314 | Cite as

Velocity optimization algorithm of 4-DOF robot end-effectors

  • Hua ZhangEmail author
  • Wenqi LuEmail author
  • Chuanyu Wu
  • Kong Tu
Article
  • 85 Downloads

Abstract

To solve the problem velocity control for robot end-effectors trajectory planning in the Cartesian space, this paper studied the algorithm of the linear acceleration and deceleration. Moreover, it proposed a velocity optimization algorithm based on the displacement equivalent. Adjusting the speed size of the acceleration and deceleration, the algorithm reduced the velocity mutation due to the discretized interpolation equation. The algorithm then was applied to the linear and circular interpolation of 4-degree of freedom industrial robots, establishing the forward and inverse kinematics equation based on Denavit–Hartenberg (D–H) coordinate system with implementing the optimization algorithm in the motion control system. Next, the velocity of the end-effectors was tested using the acceleration sensor and data logger. The results of simulation and experiment showed that velocity optimization algorithm eliminated the acceleration point and decreased the deceleration point on the velocity mutation.

Keywords

Displacement equivalent Velocity control Linear interpolation Circular interpolation 

Notes

Acknowledgements

This work is funded by Zhejiang Province Public Welfare Technology Application Projects of China (2017C31036), and National Natural Science Foundation of China (NSFC) (U1609205, 51675488, 51307151), and Doctoral Research Foundation of Zhejiang Sci-Tech University (13022155-Y), and Zhejiang Province New Century 151 Project of China (11130031511703), and Zhejiang Province Key Major of Mechanic Engineering (ZSTUME01B07), and Zhejiang Provincial Natural Science Foundation of China (LY18E070006, LY18E050016).

References

  1. 1.
    Chen, Y., Wang, T., Wei, H., et al.: Linear and S-shape acceleration and deceleration for CNC machine tools. China Mech. Eng. 17(15), 1600–1604 (2006)Google Scholar
  2. 2.
    Chen, Y., Wei, H., Wang, Q.: Sampled-data algorithm of linear and S shape acceleration and deceleration for CNC controller. China Mech. Eng. 21(5), 567–570 (2010)Google Scholar
  3. 3.
    Yin, J., Luo, F.: Equivalent transformation algorithm for motion time periodization of acceleration and deceleration before interpolation. China Mech. Eng. 25(24), 3320–3325 (2014)Google Scholar
  4. 4.
    Luo, J., Zong, L., Wang, M., Yuan, J.: Optimal capture occasion determination and trajectory generation for space robots grasping tumbling objects. Acta Astronaut. 136, 380–386 (2017)CrossRefGoogle Scholar
  5. 5.
    Chu, Z., Ma, Y., Hou, Y., Wang, F.: Inertial parameter identification using contact force information for an unknown object captured by a space manipulator. Acta Astronaut. 131, 69–82 (2017)CrossRefGoogle Scholar
  6. 6.
    Liu, P., Yang, M., Song, K., et al.: Study of S-curve’s application on manipulator’s trajectory interpolation algorithm. Manuf. Autom. 34(10), 4–11 (2012)Google Scholar
  7. 7.
    Leng, H., Wu, Y., Pan, X.: Velocity planning algorithm for high speed machining of micro line blocks based on cubic polynomial model. Comput. Integr. Manuf. Syst. 14(2), 336–340 (2008)Google Scholar
  8. 8.
    Nam, S.H., Yang, M.Y.: A study on a generalized parametric interpolator with real-time jerk-limited acceleration. Comput. Aided Des. 36(1), 27–36 (2004)CrossRefGoogle Scholar
  9. 9.
    Zheng, K., Zhong, H.: Velocity control method of 5-axis simultaneous computerized numerical control system. Comput. Integr. Manuf. Syst. 13(5), 950–966 (2007)Google Scholar
  10. 10.
    Wang, Y., Xiao, L., Zeng, S., et al.: An optimal federate model and solution for high-speed machining of small line blocks with look-ahead. J. Shanghai Jiaotong Univ. 38(6), 901–904 (2004)Google Scholar
  11. 11.
    Li, J., He, S., Wu, H.: Linear interpolation algorithm and its application in robot. J. Mech. Electr. Eng. 32(7), 966–970 (2015)Google Scholar
  12. 12.
    Leng, H., Wu, Y., Pan, X.: New single segment acceleration and deceleration control method based on cubic polynomial model. J. Zhejiang Univ. (Eng. Sci.) 42(8), 1440–1444 (2008)Google Scholar
  13. 13.
    Zhou, Q.: Electron. Commer. Res. (2017).  https://doi.org/10.1007/s10660-017-9265-8 CrossRefGoogle Scholar
  14. 14.
    Zhou, Q., Liu, R.: Clust. Comput. 19, 2109 (2016).  https://doi.org/10.1007/s10586-016-0655-9 CrossRefGoogle Scholar
  15. 15.
    Zhou, Q.: Clust. Comput. 19, 1275 (2016).  https://doi.org/10.1007/s10586-016-0580-y CrossRefGoogle Scholar
  16. 16.
    Chen, G., Hu, X., Wang, M.: Trajectory planning and applications for the circular motion of manipulator. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 33(11), 63–66 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zhejiang Provincial Key Laboratory of Modern Textile Equipment TechnologyZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.College of Energy EngineeringZhejiang UniversityHangzhouChina
  3. 3.Zhejiang Dunan Artificial Environment Co., LtdZhujiChina

Personalised recommendations