Advertisement

Cluster Computing

, Volume 22, Supplement 2, pp 4457–4478 | Cite as

Optimized gradient histogram preservation with block wise SURE shrinkage for noise free image restoration

  • K. Sakthidasan Sankaran
  • S. Prabha
  • P. M. Rubesh AnandEmail author
Article

Abstract

The image noise removal and restoration techniques invariably employ the hybrid filter and genetic algorithm approaches for recovery of noise free images. However, the desired level of denoising is not met with these approaches. The usage of adaptive genetic algorithm recovers the quality of the restored image. In order to improve the image denoising performance, an innovative noise removal method named optimized gradient histogram preservation (OGHP) is proposed. Initially, the preprocessing is applied on the noise contaminated image. Subsequently, the preprocessed image is subjected to OGHP noise exclusion procedure and stein’s unbiased risk estimate shrinkage. The resulted noiseless images are passed through the image restoration procedure carried out by employing the proposed adaptive genetic algorithm. The performance evaluation of the proposed method compared with the existing techniques demonstrates the efficiency of the proposed technique in noise elimination and effective restoration of image.

Keywords

Image restoration Histogram preservation Particle swarm optimization Discrete wavelet transform Genetic algorithm 

References

  1. 1.
    Pujar, J.H., Kunnar, K.S.: A noval approach for image restoration via nearest neighbf method. J. Theor. Appl. Inf. Technol. 14(2), 76–79 (2010)Google Scholar
  2. 2.
    Kundra, H., Verma, M., Aashima, : Filter for removal of impulse noise by using fuzzy logic. Int. J. Image Process. 3(5), 195–202 (2009)Google Scholar
  3. 3.
    Rajan, J., Kaimal: Image denoising using wavelet embedded anisotropic diffusion (WEAD). In: Proceedings of IEEE International Conference on Visual Information Engineering (VIE), pp. 589–593 (2006)Google Scholar
  4. 4.
    Zhang, H., Yang, J., Zhang, Y., Huang, T.: Image and video restoration via non-local kernel regression. IEEE Trans. Syst. Man Cybern. Part B 42(6), 1–12 (2012)Google Scholar
  5. 5.
    Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance estimation: a low-rank approach. In: IEEE Transactions on Image Processing, vol. 22, no. 2, pp. 700–711 (2013)Google Scholar
  6. 6.
    Sakthidasan, K., Bhuvaneshwari, S., Nagarajan, V.: A new edge preserved technique using iterative median filter. In: IEEE Xplore-Digital Library pp. 1750–1754. Print ISBN: 978-1-4799-3357-0.  https://doi.org/10.1109/iccsp.2014.6950146 (2015)
  7. 7.
    Wilscy, M., Nair, M.S.: Fuzzy approach for restoring color images corrupted with additive noise. In: Proceedings of the World Congress on Engineering, London, UK, vol. 1, pp. 637–642 (2008)Google Scholar
  8. 8.
    Bronstein, M.M., Bronstein, A.M., Zibulevsky, M., Zeevi, Y.Y.: Blind deconvolution of images using optimal sparse representations. IEEE Trans. Image Process. 14(6), 1–8 (2005)Google Scholar
  9. 9.
    Sakthidasan, K., Nagappan, V.: Noise free image restoration using hybrid filter with adaptive genetic algorithm. Int. J. Comput. Electr. Eng. 54(4), 382–392 (2016)Google Scholar
  10. 10.
    Kaur, L., Gupta, S., Chauhan, R.C.: Image denoising using wavelet thresholding. In: Third Conference on Computer Vision, Graphics and Image Processing, pp. 16–18 (2002)Google Scholar
  11. 11.
    Lefkimmiatis, S., Bourquard, A., Unser, M.: Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process. 21(3), 983–995 (2012)Google Scholar
  12. 12.
    Li, J., Wang, L., Bao, P.: An industrial CT image adaptive filtering method based on anisotropic diffusion. In: Proceedings of the IEEE International Conference on Mechatronics and Automation, pp. 1009–1014, 9–12 Aug 2009Google Scholar
  13. 13.
    Syed, A.A., Vathsal, S., Kishore, L.: CT image denoising technique using GA aided window—based multiwavelet transformation and thresholding with the incorporation of an effective quality enhancement method. Int. J. Digit. Content Technol. Appl. 4(4), 75–87 (2010)Google Scholar
  14. 14.
    Zhang, H., Yang, J., Zhang, Y., Huang, T.S.: Image and video restorations via nonlocal kernel regression. IEEE Trans. Cybern. 43(3), 1035–1046 (2013)Google Scholar
  15. 15.
    Wang, S., Xia, Y., Liu, Q., Dong, P., Feng, D.D., Luo, J.: Fenchel duality based dictionary learning for restoration of noisy images. IEEE Trans. Image Process. 22(12), 5214–5225 (2013)Google Scholar
  16. 16.
    Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2013)Google Scholar
  17. 17.
    Varghese, J., Ghouse, M., Subash, S., Siddappa, M., Khan, M.S., Hussain, O.B.: Efficient adaptive fuzzy-based switching weighted average filter for the restoration of impulse corrupted digital images. IET Image Proc. 8(4), 199–206 (2014)Google Scholar
  18. 18.
    Rasti, B., Sveinsson, J.R., Ulfarsson, M.O.: Wavelet-based sparse reduced-rank regression for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 52(10), 6688–6698 (2014)Google Scholar
  19. 19.
    Liu, X., Zhai, D., Zhou, J., Wang, S., Zhao, D., Gao, H.: Sparsity-based image error concealment via adaptive dual dictionary learning and regularization. IEEE Trans. Image Process. 26(2), 782–796 (2017)Google Scholar
  20. 20.
    Zhang, L., Dong, W., Zhang, D., Shi, G.: Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recogn. 43, 1531–1549 (2010)Google Scholar
  21. 21.
    Pizurica, A., Philips, W.: Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising. IEEE Trans. Image Process. 15(3), 654–665 (2006)Google Scholar
  22. 22.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)Google Scholar
  23. 23.
    Ansari, N., Gupta, A.: Image reconstruction using matched wavelet estimated from data sensed compressively using partial canonical identity matrix. IEEE Trans. Image Process. 26(8), 3680–3695 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. Sakthidasan Sankaran
    • 1
  • S. Prabha
    • 1
  • P. M. Rubesh Anand
    • 1
    Email author
  1. 1.Department of Electronics and Communication EngineeringHindustan Institute of Technology and ScienceChennaiIndia

Personalised recommendations