Advertisement

Cluster Computing

, Volume 22, Supplement 2, pp 4443–4455 | Cite as

Performance analysis of artificial intelligent controllers in PEM fuel cell voltage tracking

  • R. VinuEmail author
  • Varghese Paul
Article
  • 54 Downloads

Abstract

The main criteria to be kept in mind while designing any application using fuel cell is the Voltage Control under sudden load variations. As a standard practice the output voltage of a fuel cell is controlled and maintained to the reference by introducing Intelligent Controllers. This paper shows the performance analysis of various intelligent controllers that can track the output voltage of fuel cell. In this paper, the state space model of Proton Exchange Membrane Fuel cell is considered for analyzing various controllers. Additionally the transient response of the fuel cell is analyzed and compared for the different controllers. The performance of the controllers is evaluated by estimating the time response characteristics of the system and also by calculating the system errors.

Keywords

Feedback Intelligent systems Neural networks Optimal control Renewable energy source 

References

  1. 1.
    T-Raissi, A., Banerjee, A.: Current technology of fuel cell systems. In: Proceedings of the 32nd Intersociety on Energy Conversion Engineering Conference, IECEC-97, vol. 3, pp. 1953–1957 (1997)Google Scholar
  2. 2.
    Samrat Nandikesan, P., Mohanty, S., Shaneeth, M., Kamlakaran, K.P.: Control strategy for PEM fuel cell power plant. In: IEEE I International Conference on Power and Energy in NERIST (ICPEN), pp. 1–3. IEEE 978-1-4673-1669-9/12 (2012)Google Scholar
  3. 3.
    Mohamed Ali, E.A., Abhudhahir, A.: A survey of the relevance of control systems for PEM fuel cells. In: IEEE International Conference on Computer, Communication and Electrical Technology-ICCCET, pp. 322–326. ICCCET.978-1-4244-9394-4/11 (2011)Google Scholar
  4. 4.
    Karimi, M., Imanzadeh, M., Farhadi, P., Ghadimi, N.: Voltage control of PEMFC using a new controller based on reinforcement learning. Int. J. Inf. Electron. Eng. 2(5), 752–756 (2012).  https://doi.org/10.7763/ijiee.2012.v2.200 Google Scholar
  5. 5.
    Rezazadeh, A., Askarzadeh, A., Sedighizadeh, M.: Adaptive inverse control of proton exchange membrane fuel cell using RBF neural network. Int. J. Electrochem. Sci. 6, 3105–3117 (2011)Google Scholar
  6. 6.
    Mansour, A.M., Saad, N.H., Sattar, A.A.: Maximum power point tracking of ten parameter fuel cell model. J. Am. Sci. 8(8), 941–946 (2012)Google Scholar
  7. 7.
    Rezai, M., Mohseni, M.: A predictive control based on neural network for dynamic model of proton exchange membrane fuel cell. J. Fuel Cell Sci Technol 10(3), 035001 (2013)Google Scholar
  8. 8.
    Borujeni, M.S., Zarabadipour, H.: Fuel cell voltage control using neural network based on model predictive control. In: 2014 Iranian Conference on Intelligent Systems (ICIS) (2014).  https://doi.org/10.1109/iraniancis.2014.6802609
  9. 9.
    Fan, L., Liu, Y.: Fuzzy logic based constant power control of a proton exchange membrane fuel cell. Przeglad Elektrotechniczny (Electrical Review), 72–75 (2012)Google Scholar
  10. 10.
    Cao, J.-Y., Cao, B.-G.: Design of fractional order controller based on particle swarm optimization. Int. J. Control Autom. Syst. 4(6), 775–781 (2006)Google Scholar
  11. 11.
    Chen, Y.Q., Petras, I., Xue, D.: Fractional order control-a tutorial. In: 2009 American Control Conference AACC, pp. 1397–1411 (2009). WeC02.1. 978-1-4244-4524-0/09Google Scholar
  12. 12.
    Barbosa, R.S., Jesus, I.S.: Comparitive study of fuzzy integer and fractional PID controller. In: 39th Annual Conference of the IEEE Industrial Electronics Society, IECON 2013, pp. 3392–3397 (2013).  https://doi.org/10.1109/iecon.2013.6699673
  13. 13.
    Singhal, R., Padhee, S., Kaur, G.: Design of fractional order PID controller for speed control of DC motor. Int. J. Sci. Res. Publ. 2(6), 1–8 (2012)Google Scholar
  14. 14.
    Zhang, Y., Li, J.: Fractional order PID controller tuning based on genetic algorithm. In: 2011 IEEE International Conference on Business Management and Electronic Information, pp. 764–767 (2011).  https://doi.org/10.1109/icbmei.2011.5920371
  15. 15.
    Bettayeb, M., Rachid, M.: IMC-PID fractional order filter controllers design for integer order systems. In: ISA Transactions Elsevier, pp. 1620–1628 (2014). http://dx.doi.org/10.1016/j.isatra.2014.05.007
  16. 16.
    Farhadi, P., Sojoudi, T.: PEMFC voltage control using PSO-tuned PID controller. In: Proceedings of IEEE NW Russia Young Researches in Electrical and Electronics Engineering Conference, pp. 32–35 (2014).  https://doi.org/10.1109/elconrusnw.2014.6839194
  17. 17.
    Shamel, A., Ghadimi, N.: Hybrid PSTOTVAC/BFA technique for tuning of robust PID controller of fuel cell voltage. Indian J. Chem. Technol. 23, 171–178 (2016)Google Scholar
  18. 18.
    Khoeiniha, M., Zarabadipuour, H.: Optimal control design for proton exchange membrane fuel cell via genetic algorithm. Int. J. Electrochem. Sci. 7, 6302–6312 (2012)Google Scholar
  19. 19.
    Houshyar, A., Mohammadi, M., Rasouli Nezhad, R., Ghadimi, N.: Designing PID controller for fuel cell voltage using evolutionary programming algorithms. J. Basic Appl. Sci. Res. 2(2), 1981–1987 (2012)Google Scholar
  20. 20.
    Sachin Puranik, V., Keyhani, Ali, Khorrami, Farshad: State space modelling of proton exchange membrane fuel cell. IEEE Trans. Energy Convers. 25(3), 804–813 (2010).  https://doi.org/10.1109/TEC.2010.2047725 Google Scholar
  21. 21.
    Bilbao, M.N., Del Ser, J., Geem, Z.W., Gil-Lopez, S., Landa-Torres, I., Manjarres, D., Salcedo-Sanz, S.: A Survey on the Applications of the harmony search algorithm. Eng. Appl. Artif. Intell. 26(8), 1818–1831 (2013).  https://doi.org/10.1016/j.engappai.2013.05.008 Google Scholar
  22. 22.
    Kassim, N., Sulaiman, S.I., Musirin, I.: Harmony search based optimization of artificial neural network for predicting AC power from a photovoltaic system. In: IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014).  https://doi.org/10.1109/peoco.2014.6814481
  23. 23.
    Askarzadeh, A., Rezazadeh, A.: An innovative global harmony search algorithm for parameter identification of a PEM fuel cell model. IEEE Trans. Ind. Electron. 59(9), 3473–3480 (2011).  https://doi.org/10.1109/tie.2011.2172173 Google Scholar
  24. 24.
    Vinu, R., Paul, V.: Robust optimized artificial neural network based PEM fuelcell voltage tracking. Adv. Intell. Syst. Comput. 424, 79–91 (2015).  https://doi.org/10.1007/978-3-319-28031-8 Google Scholar
  25. 25.
    Vinu, R., Paul, V.: Harmony search optimized fractional order PID controller for voltage control of fuel cell. Asian J. Res. Soc. Sci. Hum. 6(10), 815–829 (2016).  https://doi.org/10.5958/2249-7315.2016.01055.8 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Anna UniversityChennaiIndia
  2. 2.Toc H Institute of Science and TechnologyCochinIndia

Personalised recommendations