Advertisement

Cluster Computing

, Volume 22, Supplement 1, pp 347–360 | Cite as

A cloud system model employing random space vector pulse width modulation for noise reduction in VSI fed induction motor

  • R. Mohan DasEmail author
  • E. Chandira Sekaran
Article
  • 65 Downloads

Abstract

Noise reduction at the specific frequency of the line voltage of two level three phase voltage source inverter (VSI) fed induction motor (IM) is dealt in this paper, and the paper aims to develop a new PWM called random space vector pulse width modulation technique (RSVPWM) for reducing noise on line voltage and as well is applied for modeling in cloudsystems. The developed Random SVPWM combines RPWM and Space vector modulation (SVPWM) technique, the paper also investigates the three-phase VSI fed IM and its noise behavior along with noise reduction for cloud system. The proposed method includes a gap in the spectrum of line voltage at selective frequency in human hearing range and as well employed in cloud systems. Therefore, unlike conventional RPWM techniques, switching periods are determined based on the position of rotary reference vector. This work on comparison with other PWM techniques such as sine PWM, RPWM and SVPWM, performs in a better manner. Among all PWM method the proposed RSVPWM generate higher voltages with low total harmonic distortion for VSI fed IM and as well for the considered cloud system models. The proposed RSVPWM achieves less line voltage noise (10.4 dB at lower modulation range and 9 dB at higher modulation range), which proves its effectiveness. The simulation and experimentation is carried out for the full range of switching frequency of 1–20 kHz. The modulation method can be used in both open- and closed-loop IM drive such as V/F and vector control. The above method is applied for both IM and considered cloud system problems.

Keywords

Random space vector pulse width modulation Acoustic noise Power spectral density (PSD) Three phase voltage source inverters Resonant frequency excitation Induction motor Cloud systems 

References

  1. 1.
    Dekker, M., Barron, R.F.: Industrial noise control and acoustics. Louisiana Tech. University Ruston, Louisiana, USA, ISBN: 0-8247-0701-XGoogle Scholar
  2. 2.
    Trzynadlowski, M., Blaabjerg, F., Pedersen, J.K., Kirlin, R.L., Legowski, S.: Random pulse width modulation technique for converter fed drive system- review. IEEE Trans. Ind. Appl. 30(5), 1166–1175 (1994)CrossRefGoogle Scholar
  3. 3.
    Jacob, B., Baiju, M.: Spread spectrum modulation scheme for two level inverter using vector quantised space vector based pulse density modulation. IET Electr. Power Appl. 5, 589–596 (2011)CrossRefGoogle Scholar
  4. 4.
    Pedersen, J.K., Blaabjerg, F., Frederiksen, P.: Reduction of acoustic noise emission in AC-machines by intelligent distributed random modulation. In: Proceedings of the 5th European Conference on the Power Electronics Applications, pp. 369–375 (1993)Google Scholar
  5. 5.
    Blaabjerg, F., Pedersen, J.K., Ritchie, E., Nielsen, P.: Determination of mechanical resonances in induction motors by random modulation and acoustic measurement. IEEE Trans. Ind. Appl. 31(4), 823–829 (1995)CrossRefGoogle Scholar
  6. 6.
    Bech, M.M., Blaabjerg, F., Pedersen, J.K.: Random modulation techniques with fixed switching frequency for three-phase power converters. IEEE Trans. Power Electron. 15(4), 753–761 (2000)CrossRefGoogle Scholar
  7. 7.
    Trzynadlowski, A.M., Borisov, K., Li, Y., Qin, L., Wang, Z.: Mitigation of electromagnetic interference and acoustic noise in vehicular drives by random pulse width modulation. In: Proceedings of the Power Electronics in Transportation, pp. 67–71 (2004)Google Scholar
  8. 8.
    Borisov, K., Calvert, T.E., Kleppe, J.A., Martin, M., Trzynadlowski, A.M.: Experimental investigation of a naval propulsion drive model with the PWM-based attenuation of the acoustic and electromagnetic noise. IEEE Trans. Ind. Electron. 53(2), 450–457 (2006)CrossRefGoogle Scholar
  9. 9.
    Schulz, D., Kowalewski, D.L.: Implementation of variable-delay random PWM for automotive applications. IEEE Trans. Veh. Technol. 56(3), 1427–1433 (2007)CrossRefGoogle Scholar
  10. 10.
    Qi, C., Chen, X., Qiu, Y.: Carrier-based randomized pulse position modulation of an indirect matrix converter for attenuating the harmonic peaks. IEEE Trans. Power Electron. 28(7), 3539–3548 (2013)CrossRefGoogle Scholar
  11. 11.
    Lai, Y.-S., Chang, Y.-T., Chen, B.-Y.: Novel random-switching PWM technique with the constant sampling frequency and constant inductor average current for digitally controlled converter. IEEE Trans. Ind. Electron. 60(8), 3126–3135 (2013)CrossRefGoogle Scholar
  12. 12.
    Mathe, L., Omand, P.R., Pedersen, J.K.: Shaping the spectra of the line to line voltage using signal injection in the common mode voltage. In: Proceedings of the 35th Annual Conference of IEEE Industrial Electronics (IECON09), pp. 1288–1293 (2009)Google Scholar
  13. 13.
    Oh, S.-Y., Jung, Y.-G., Yang, S.-H., Lim, Y.-C.: Harmonic-spectrum spreading effects of two-phase random centred distribution PWM (DZRCD) scheme with dual zero vectors. IEEE Trans. Ind. Electron. 56(8), 3013–3020 (2009)CrossRefGoogle Scholar
  14. 14.
    Lai, Y.-S., Chen, B.-Y.: New random PWM technique for a full-bridge DC/DC converter with harmonics intensity reduction and considering efficiency. IEEE Trans. Power Electron. 28(11), 5013–5023 (2013)CrossRefGoogle Scholar
  15. 15.
    Jiang, D., Wang, F.: Variable switching frequency PWM for three-phase converters based on current ripple prediction. IEEE Trans. Power Electron. 28(11), 4951–4961 (2013)CrossRefGoogle Scholar
  16. 16.
    Mathe, G., Lungeanu, F., Sera, D., Rasmussen, P.O., Pedersen, J.K.: Spread spectrum modulation by using asymmetric-carrier random PWM. IEEE Trans. Ind. Electron. 59(10), 3710–3718 (2012)CrossRefGoogle Scholar
  17. 17.
    Máthé, L.: Product sound: Acoustically pleasant motor drives (2010)Google Scholar
  18. 18.
    Peyghambari, A., Dastfan, A., Ahmadyfard, A.: Strategy for switching period selection in random pulse width modulation to shape the noise spectrum. IET Power Electron. 8, 517–523 (2015)CrossRefGoogle Scholar
  19. 19.
    Kumar, K.V., Michael, P.A., John, J.P., Kumar, D.S.S.: Simulation and comparison of SPWM and SVPWM control for three- phase inverter. ARPN J. Eng. Appl. Sci. 5, 61–74 (2010)Google Scholar
  20. 20.
    Zhou, K., Wang, D.: Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis. IEEE Trans. Ind. Electron. 49(1), 186–196 (2002)CrossRefGoogle Scholar
  21. 21.
    Bharatiraja, C., Jeevananthan, S., Latha, R., Mohan, V.: Vector selection approach-based hexagonal hysteresis space vector current controller for a three phase diode clamped MLI with capacitor voltage balancing. IET Power Electron. 9(7), 1350–1361 (2016)CrossRefGoogle Scholar
  22. 22.
    Hava, A.M., Ün, E.: A high-performance PWM algorithm for common-mode voltage reduction in three-phase voltage source inverters. IEEE Trans. Power Electron. 26(7), 1998–2008 (2011)CrossRefGoogle Scholar
  23. 23.
    Hari, V., Narayanan, G.: Space-vector-based hybrid PWM technique to reduce peak-to-peak torque ripple in induction motor drives. IEEE Trans. Ind. Appl. (2015).  https://doi.org/10.1109/APEC.2014.6803401
  24. 24.
    Bharatiraja, C., Prasad, T.B., Latha, R.: Comparative realization of different SVPWM schemes in linear modulation using FPGA. In: 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, Novosibirsk Scientific Centre, Novosibirsk, Russia, 21–25 July 2008Google Scholar
  25. 25.
    Wei, J., Zhang, X., Ammons, G., Bala, V., Ning, P.: Managing security of virtual machine images in a cloud environment. In: Proceedings of the 2009 ACM Workshop on Cloud Computing Security, pp. 91–96. ACM, New York (2009)Google Scholar
  26. 26.
    Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to adapt applications for the cloud environment. Computing 95(6), 493–535 (2013)CrossRefGoogle Scholar
  27. 27.
    Aoun, R., Doumith, E.A., Gagnaire, M.: Resource provisioning for enriched services in cloud environment. In: 2010 IEEE Second International Conference on Cloud Computing Technology and Science (CloudCom), pp. 296–303. IEEE (2010)Google Scholar
  28. 28.
    Li, C., Li, L.: Efficient resource allocation for optimizing objectives of cloud users, IaaS provider and SaaS provider in cloud environment. J. Supercomput. 65(2), 866–885 (2013)CrossRefGoogle Scholar
  29. 29.
    Rajeev, T., Ashok, S.: A cloud computing approach for power management of microgrids. In: Proceedings of the 2011 IEEE PES Innovative Smart Grid Technologies-India (ISGT India), pp. 49–52. IEEE (2011)Google Scholar
  30. 30.
    Ruqi, L.I., Haoyi, S.U.: A synthetic power quality evaluation model based on extension cloud theory. Autom. Electr. Power Syst. 1, 014 (2012)Google Scholar
  31. 31.
    Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review. IEEE Trans. Cloud Comput. 1(2), 142–157 (2013)CrossRefGoogle Scholar
  32. 32.
    Leymann, F., Fehling, C., Mietzner, R., Nowak, A., Dustdar, S.: Moving applications to the cloud: an approach based on application model enrichment. Int. J. Cooperative Inf. Syst. 20(03), 307–356 (2011)CrossRefGoogle Scholar
  33. 33.
    Tran, V., Keung, J., Liu, A., Fekete, A.: Application migration to cloud: a taxonomy of critical factors. In: Proceedings of the 2nd International Workshop on Software Engineering for Cloud Computing, pp. 22–28. ACM (2011)Google Scholar
  34. 34.
    Andrikopoulos, V., Gómez Sáez, S., Leymann, F., Wettinger, J.: Optimal distribution of applications in the cloud. In: Proceedings of the International Conference on Advanced Information Systems Engineering, pp. 75–90. Springer, Cham (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sri Shakthi Institute of Engineering and TechnologyCoimbatoreIndia
  2. 2.Coimbatore Institute of TechnologyCoimbatoreIndia

Personalised recommendations