Advertisement

Cluster Computing

, Volume 22, Supplement 3, pp 6231–6239 | Cite as

Map matching based on Cell-ID localization for mobile phone users

  • Feng Lin
  • Mingqi Lv
  • Ting Wang
  • Tieming ChenEmail author
Article
  • 87 Downloads

Abstract

Map matching is a process of aligning a sequence of location estimates to a sequence of road segments in a road network to reduce the noisiness of the location estimates. Most existing map matching methods are designed based on GPS localization, which has many limitations (e.g. unstable urban operations and power hungry) and not suitable for mobile phone users. In this paper, we propose a map matching method based on Cell-ID localization for mobile phone users. Cell-ID localization is stable and energy efficient, but the location estimates are highly inaccurate, making the existing methods ineffective. For this problem, the proposed method firstly handles the inaccurate location estimates from Cell-ID localization through a series of preprocessing steps, and then uses a HMM (Hidden Markov Model) to align a sequence of location estimates to a sequence of road segments. The experimental results based on a real-world dataset collected in an urban environment have demonstrated the effectiveness of the proposed approach.

Keywords

Map matching Mobile phone Cell-ID localization Energy efficiency 

Notes

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (Nos. LY18F020033, LY15F020025), the Natural Science Foundation of China (Nos. 61772026, 61202282), and the Joint Funds of the National Natural Science Foundation of China (No. U1509214).

References

  1. 1.
    Toledo-Moreo, R., Bétaille, D., Peyret, F.: Lane-level integrity provision for navigation and map matching with GNSS, dead reckoning, and enhanced maps. IEEE Trans. Intell. Transp. Syst. 11(1), 100–112 (2010)CrossRefGoogle Scholar
  2. 2.
    Zolfpour-Arokhlo, M., Selamat, A., Hashim, S.Z.: Route planning model of multi-agent system for a supply chain management. Expert Syst. Appl. 40(5), 1505–1518 (2013)CrossRefGoogle Scholar
  3. 3.
    Janecek, A., Hummel, K.A., Valerio, D., Ricciato, F., Hlavacs. H.: Cellular data meet vehicular traffic theory: location area updates and cell transitions for travel time estimation. In: Proceedings of the ACM Conference on Ubiquitous Computing (UbiComp), pp. 361-370. (2012)Google Scholar
  4. 4.
    Greenfeld, J.S.: Matching GPS observations to locations on a digital map. In: Proceedings of the Annual Meeting of the Transportation Research Board (2002)Google Scholar
  5. 5.
    Newson. P., Krumm, J.: Hidden Markov map matching through noise and sparseness. In: Proceedings of the SIGSPATIAL Conference on Advanced in Geographic Information Systems (GIS), pp. 336-343. (2009)Google Scholar
  6. 6.
    Liu, J., Tian, Y., Yu, X., Yang, Z., Jia, X., Ma, C., Xu, Z.: A multi-source approach for bug triage. Int. J. Softw. Eng. Knowl. Eng. 26(9–10), 1593–1604 (2016)CrossRefGoogle Scholar
  7. 7.
    Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C: On map-matching vehicle tracking data. In: Proceedings of the International Conference on Very Large Data Bases (VLDB), pp. 853-864. (2005)Google Scholar
  8. 8.
    Liu, J., Yu, X., Xu, Z., Choo, K.R., Hong, L., Cui, X.: A cloud-based taxi trace mining framework for smart city. Softw. Pract. Exper. 47(8), 1081–1094 (2017)Google Scholar
  9. 9.
    Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms for transport applications: state-of-the-art and future research directions. Transp. Res. Part C 15(5), 312–328 (2007)CrossRefGoogle Scholar
  10. 10.
    Ding, Y., Xu, Z., Zhang, Y., Sun, K.: Fast lane detection based on bird’s eye view and improved random sample consensus algorithm. Multimed. Tools Appl. 76(21), 22979–22998 (2017)CrossRefGoogle Scholar
  11. 11.
    Quddus, M.A., Ochieng, W.Y., Zhao, L., Noland, R.B.: A general map matching algorithm for transport telematics applications. GPS Solut. 7(3), 157–167 (2003)CrossRefGoogle Scholar
  12. 12.
    Rose, G.: Mobile phones as traffic probes: practices, prospects and issues. Transp. Rev. 26(3), 275–291 (2006)CrossRefGoogle Scholar
  13. 13.
    Thiagarajan, A., Biagioni, J., Gerlich, T., Eriksson, J.: Cooperative transit tracking using smart-phones. In: Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys), pp. 85–98. (2010)Google Scholar
  14. 14.
    Paek, J., Kim, J., Govindan, R.: Energy-efficient rate-adaptive GPS-based localization for smartphones. In: Proceedings of the International Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 299–314 (2010)Google Scholar
  15. 15.
    Yang, G.: Discovering significant places from mobile phones: a mass market solution. In: Proceedings of the International Conference on Mobile Entity Localization and Tracking in GPS-less Environments (MELT), pp. 34–49 (2009)CrossRefGoogle Scholar
  16. 16.
    Aly H, Youssef M (2015) semMatch: Road semantics-based accurate map matching for challenging positioning data. Proceedings of the ACM SIGSPATIAL Conference on Advances in Geographic Information SystemsGoogle Scholar
  17. 17.
    LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J.: Place lab: device localization using radio beacons in the wild. In: Proceedings of the International Conference on Pervasive Computing, pp. 116–133 (2005)Google Scholar
  18. 18.
    Laasonen, K., Raento, M., Toivonen, H.: Adaptive on-device location recognition. In: Proceedings of the International Conference on Pervasive Computing, pp. 287–304 (2004)Google Scholar
  19. 19.
    Bayir, M.A., Demirbas, M., Eagle, N.: Mobility profiler: a framework for discovering mobility profiles of cell phone users. Pervasive Mob. Comput. 6(4), 435–454 (2010)CrossRefGoogle Scholar
  20. 20.
    Trevisani, E., Vitaletti, A.: Cell-ID location technique, limits and benefits: an experimental study. In: Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications, pp. 51–60 (2004)Google Scholar
  21. 21.
    Thiagarajan, A., Ravindranath, L., Balakrishnan, H., Madden, S., Girod, L.: Accurate, low-energy trajectory mapping for mobile devices. In: Proceedings of the USENIX Conference on Networked Systems Design and Implementation (NSDI) (2011)Google Scholar
  22. 22.
    Yuan, Y., Guan, W., Qiu, W.: Map matching of mobile probes based on handover location technology. In: Proceedings of the International Conference on Networking, Sensing and Control (ICNSC), pp. 587–592 (2010)Google Scholar
  23. 23.
    Becker, R.A., Caceres, R., Hanson, K., Loh, J.M., Urbanek, S., Varshavsky, A., Volinsky, C.: Route classification using cellular handoff patterns. In: Proceedings of the International Conference on Ubiquitous Computing (UbiComp), pp. 123–132 (2011)Google Scholar
  24. 24.
    Sohn, T., Varshavsky, A., LaMarca, A., Chen, M.Y., Choudhury, T., Smith, I., Consolvo, S., Hightower, J., Griswold, W.G., de Lara, E.: Mobility detection using everyday GSM traces. In: Proceedings of the International Conference on Ubiquitous Computing (UbiComp), pp. 212–224 (2006)Google Scholar
  25. 25.
    Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M., Howard, E., West, R., Boda, P.: PEIR, the personal environmental impact report, as a platform for participatory sensing systems research. In: Proceedings of the International Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 55–68 (2009)Google Scholar
  26. 26.
    Guha S, Plarre K, Lissner D, Mitra S, Krishna B (2010) Autowitness: Locating and tracking stolen property while tolerating GPS and radio outages. Proceedings of the ACM Conference on Embedded Sensor System (SenSys), pp. 29-42Google Scholar
  27. 27.
    Wang, H., Wang, Z., Shen, G., Li, F., Han, S., Zhao, F.: WheelLoc: enabling continuous location service on mobile phone for outdoor scenarios. In: Proceedings of the IEEE International Conference on Computer Communications (INFOCOM) (2013)Google Scholar
  28. 28.
    Tao, Y., Faloutsos, C., Papadias, D., Liu, B.: Prediction and indexing of moving objects with unknown motion patterns. In: Proceedings of the ACM International Conference on Management of Data (SIGMOD), pp. 611–622 (2004)Google Scholar
  29. 29.
    Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13, 260–269 (1967)CrossRefGoogle Scholar
  30. 30.
  31. 31.
  32. 32.
    Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: Proceedings of the International Symposium on String Processing Information Retrieval. (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Science and TechnologyZhejiang Institute of Economics and TradeHangzhouChina
  2. 2.College of Computer ScienceZhejiang University of TechnologyHangzhouChina

Personalised recommendations