Cluster Computing

, Volume 22, Supplement 2, pp 4361–4366 | Cite as

GARCH model prediction method based on Hessian matrix dynamic programming deep neural network

  • Ding LeiEmail author


One futures market GARCH model prediction method based on Hessian matrix dynamic programming deep neural networks has been proposed to improve the prediction accuracy of futures market model. Firstly, data analysis has been made for futures market based on GARCH model. It takes twelve factors of today opening, the highest price, the lowest price, today closing, ups and downs, volume, SMA, 10BIAS, 10PSY, 10RSI, 10AR and 10BR as input variables, which is comparative series and then set up GARCH prediction model; secondly, Hessian dynamic programming deep learning network has been constructed, learning and training have been made for the established futures market GARCH model to improve prediction accuracy and efficiency; lastly, the effectiveness of this algorithm has been verified through simulation experiment.


Futures market GARCH model Deep neural networks Dynamic programming Hessian matrix 


  1. 1.
    Vrontos, I.: Evidence for hedge fund predictability from a multivariate Student’s full-factor GARCH model. J. Appl. Stat. 39(6), 1295–1321 (2010)Google Scholar
  2. 2.
    Würtz, D., Chalabi, Y., Luksan, L.: Parameter estimation of ARMA models with GARCH/APARCH errors an R and SPlus software implementation. J. Stat. Softw. 55, 28–33 (2006)Google Scholar
  3. 3.
    Jin, W.: On electricity spot price properties by t-innovation GARCH model. Telkomnika Indones. J. Electr. Eng. 11(10), 5675–5683 (2013)Google Scholar
  4. 4.
    Ramírez, O.A., Fadiga, M.: Forecasting agricultural commodity prices with asymmetric-error GARCH models. J. Agric. Resour. Econ. 28(1), 71–85 (2003)Google Scholar
  5. 5.
    Augustyniak, M.: Maximum likelihood estimation of the Markov-switching GARCH model. Comput. Stat. Data Anal. 76, 61–75 (2014)Google Scholar
  6. 6.
    Ben-Ameur, H., Cref, H., Montréal, M., et al.: A dynamic programming approach for pricing derivatives in the GARCH model. Manag. Sci. 55, 252–266 (2005)Google Scholar
  7. 7.
    Rebennack, S.: Combining sampling-based and scenario-based nested Benders decomposition methods: application to stochastic dual dynamic programming. Math. Progr. 156(1–2), 343–389 (2016)Google Scholar
  8. 8.
    Tullsen, D.M., Eggers, S.J., Emer, J.S., et al.: Exploiting choice: instruction fetch and issue on an implementable simultaneous multithreading processor. In: International Symposium on Computer Architecture. IEEE, pp. 191–191 (2005)Google Scholar
  9. 9.
    Chaparro, P., Gonzalez, J., Magklis, G., et al.: Understanding the thermal implications of multi-core architectures. IEEE Trans. Parall. Distrib. Syst. 18(8), 1055–1065 (2007)Google Scholar
  10. 10.
    Hari, S.K.S., Adve, S.V., Naeimi, H., et al.: Relyzer: exploiting application-level fault equivalence to analyze application resiliency to transient faults. Comput. Arch. News 40(1), 123–134 (2012)Google Scholar
  11. 11.
    Freitas, F.D., Souza, A.F.D., Almeida, A.R.D.: Prediction-based portfolio optimization model using neural networks. Neurocomputing 72(10–12), 2155–2170 (2009)Google Scholar
  12. 12.
    Bollerslev, T., Jeffrey, M., Wooldridge, J.M.: Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econom. Rev. 11(2), 143–172 (1992)Google Scholar
  13. 13.
    Hamilton, J.D., Susmel, R.: Autoregressive conditional heteroskedasticity and changes in regime. J. Econom. 64(1–2), 307–333 (1994)Google Scholar
  14. 14.
    Sentana, E., Fiorentini, G.: Identification, estimation and testing of conditionally heteroskedastic factor models. J. Econom. 102(2), 143–164 (2001)Google Scholar
  15. 15.
    Patton, A.J.: A review of copula models for economic time series. J. Multivar. Anal. 110(5), 4–18 (2012)Google Scholar
  16. 16.
    Mizrach, B.: Inference and forecasting for ARFIMA models with an application to US and UK inflation. Stud. Nonlinear Dyn. Econom. 8(2), 1218 (2004)Google Scholar
  17. 17.
    Wang, L., Wu, W., Xu, Z., et al.: BLASX: a high performance level-3 BLAS library for heterogeneous multi-GPU computing. In: International Conference on Supercomputing. ACM, p. 20 (2016)Google Scholar
  18. 18.
    Arunkumar, N., Ramkumar, K., Venkatraman, V., Abdulhay, E., Fernandes, S.L., Kadry, S., Segal, S.: Classification of focal and non focal EEG using entropies. Pattern Recogn. Lett. 94, 112–117 (2017)Google Scholar
  19. 19.
    Arunkumar, N., Kumar, K.R., Venkataraman, V.: Automatic detection of epileptic seizures using new entropy measures. J. Med. Imaging Health Inf. 6(3), 724–730 (2016)Google Scholar
  20. 20.
    Enas, A., Mazin-Abed, M., Dheyaa-Ahmed, I., Arunkumar, N., Venkatraman, V.: Computer aided solution for automatic segmenting and measurements of blood leucocytes using static microscope images. J. Med. Syst. (2018). Google Scholar
  21. 21.
    Arunkumar, N., Ramkumar, K., Venkatraman, V.: Entropy features for focal EEG and non focal EEG. J. Comput. Sci. (2018). Google Scholar
  22. 22.
    Hamza, R., Muhammad, K., Arunkumar, N., González, G.R.: Hash based encryption for keyframes of diagnostic hysteroscopy. IEEE Access (2017). Google Scholar
  23. 23.
    Fernandes, S.L., Gurupur, V.P., Sunder, N.R., Arunkumar, N., Kadry, S.: A novel nonintrusive decision support approach for heart rate measurement. Pattern Recognit. Lett. (2017). Google Scholar
  24. 24.
    Arunkumar, N., Ramkumar, K., Venkatraman, V., Abdulhay, E., Fernandes, S.L., Kadry, S., Segal, S.: Classification of focal and non focal EEG using entropies. Pattern Recognit. Lett. 94, 112–117 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics SciencesHarbin Normal UniversityHarbinChina

Personalised recommendations