Cluster Computing

, Volume 22, Supplement 3, pp 6133–6141 | Cite as

Improved algorithm for parallel mining collaborative frequent itemsets in multiple data streams

  • Fang’ai LiuEmail author
  • Qianqian Wang
  • Xin Wang


With the rapid development of the World Wide Web technology, complex and diverse data present explosive growth, so frequent itemset mining plays an essential role. In view of the mining frequent itemsets in multiple data streams by limited computing power of a single processor, an improved algorithm of Parallel Mining Collaborative frequent itemsets in multiple data streams (PMCMD-Stream) was proposed. Firstly, the algorithm compresses the potential and frequent itemsets into CP-Tree only by one-scan and applies increment method to inserting or deleting related branch on CP-Tree, we do not need to repeatedly scanning the databases to generate many candidate frequent itemsets and save the running time. Secondly, this parallelized algorithm can be run in the MapReduce programming environment. Finally, the valuable frequent itemsets, namely global collaborative frequent itemsets, were obtained. Because each candidate frequent itemset is independent, and different candidate frequent itemsets can be processed by multiple computing machines concurrently. The experimental results show that PMCMD-Stream algorithm not only can improve the mining efficiency but also have much better scalability than the existing algorithms, so as to discover the collaborative frequent itemsets from large-scale data streams.


Stream data mining Multiple data streams Parallel algorithm Sliding window Frequent itemsets Collaborative frequent itemsets 



This work was supported by the following grants: National Natural Science Foundation of China (No. 61572301, 61772321), the Innovation Fundation of Science and Technology Development Center of Ministry of Education and New H3C Group(2017A15047), Natural Science Foundation of Shandong Province (No. ZR2013FM008, and No. ZR2016FP07), the Open Research Fund from Shandong provincial Key Laboratory of Computer Network (No. SDKLCN-2016-01).


  1. 1.
    Gani, A., Siddiqa, A., Shamshirband, S., et al.: A survey on indexing techniques for big data: taxonomy and performance evaluation. Knowl. Inf. Syst. 46(2), 241–284 (2016)CrossRefGoogle Scholar
  2. 2.
    Shamshirb, S., Kalantari, S., Sam, D.Z., et al.: Expert security system in wireless sensor networks based on fuzzy discussion multi-agent systems. Sci. Res. Essays 5(24), 3840–3849 (2010)Google Scholar
  3. 3.
    Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams. Extern. Mem. Algorithms 50, 107–118 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In: Proceedings of the 28th International Conference on Very Large Data Bases. VLDB Endowment, pp. 346–357 (2002)CrossRefGoogle Scholar
  5. 5.
    Mozafari, B., Thakkar, H., Zaniolo, C.: Verifying and mining frequent patterns from large windows over data streams. In: IEEE 24th International Conference on: Data Engineering, ICDE 2008. IEEE, pp. 179–188 (2008)Google Scholar
  6. 6.
    MacBean, N., Peylin, P., Chevallier, F., et al.: Consistent assimilation of multiple data streams in a carbon cycle data assimilation system. Geosci. Model Dev. 9(10), 3569 (2016)CrossRefGoogle Scholar
  7. 7.
    Che-Qing, J.I.N., Wei-Ning, Q., Ao-Ying, Z.: Analysis and management of streaming data: a survey. J. Softw. 8, 008 (2004)Google Scholar
  8. 8.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: ACM sigmod record. ACM, vol. 22(2), pp. 207–216 (1993)CrossRefGoogle Scholar
  9. 9.
    Han, J., Pei, J., Yin, Y., et al.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Mining Knowl. Discov. 8(1), 53–87 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chaure, TM., Singh, KR.: Frequent itemset mining techniques—a technical review. In: World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave). IEEE, pp. 1–4 (2016)Google Scholar
  11. 11.
    Yu, J.X., Chong, Z., Lu, H., et al.: False positive or false negative: mining frequent itemsets from high speed transactional data streams. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases-Vol. 30. VLDB Endowment, pp. 204–215 (2004)Google Scholar
  12. 12.
    Hristidis, V., Valdivia, O., Vlachos, M., et al.: Information discovery across multiple streams. Inf. Sci. 179(19), 3268–3285 (2009)CrossRefGoogle Scholar
  13. 13.
    Yeh, M.Y., Dai, B.R., Chen, M.S.: Clustering over multiple evolving streams by events and correlations. IEEE Trans. Knowl. Data Eng. 19(10), 1349–1362 (2007)CrossRefGoogle Scholar
  14. 14.
    Guo, J., Zhang, P., Tan, J., et al.: Mining frequent patterns across multiple data streams. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. ACM, pp. 2325–2328 (2011)Google Scholar
  15. 15.
    Gunopulos, D., Khardon, R., Mannila, H., et al.: Discovering all most specific sentences. ACM Trans. Database Syst. (TODS) 28(2), 140–174 (2003)CrossRefGoogle Scholar
  16. 16.
    Otey, M.E., Wang, C., Parthasarathy, S., et al.: Mining frequent itemsets in distributed and dynamic databases. In: Third IEEE International Conference on Data Mining, ICDM 2003. IEEE, pp. 617–620 (2003)Google Scholar
  17. 17.
    Xun, Y., Zhang, J.: A parallel frequent itemsets mining algorithm based on compressed linked list. Icic Express Lett. 9(8), 2313–2318 (2015)Google Scholar
  18. 18.
    Deng, Z.H., Wang, Z.H., Jiang, J.J.: A new algorithm for fast mining frequent itemsets using N-lists. Sci. China Inf. Sci. 55(9), 2008–2030 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yu, H., Wen, J., Wang, H., et al.: An improved Apriori algorithm based on the Boolean matrix and Hadoop. Procedia Eng. 15, 1827–1831 (2011)CrossRefGoogle Scholar
  20. 20.
    Li, H., Wang, Y., Zhang, D., et al.: Pfp: parallel fp-growth for query recommendation. In: Proceedings of the 2008 ACM Conference on Recommender Systems. ACM, pp. 107–114 (2008)Google Scholar
  21. 21.
    Saabith, A.L.S., Sundararajan, E., Bakar, A.A.: Parallel implementation of apriori algorithms on the hadoop-mapreduce platform-an evaluation of literature. J. Theor. Appl. Inf. Technol. 85(3), 321 (2016)Google Scholar
  22. 22.
    Bustio-Martínez, L., Cumplido, R., Hernández-León, R., et al.: On the design of hardware-software architectures for frequent itemsets mining on data streams. J. Intell. Inf. Syst. (2017). CrossRefGoogle Scholar
  23. 23.
    Xun, Y., Zhang, J., Qin, X.: FiDoop: parallel mining of frequent itemsets MapReduce. IEEE Trans. Sys. Man Cyb. 46(3), 313–325 (2016)CrossRefGoogle Scholar
  24. 24.
    Duong, K.C., Bamha, M., Giacometti, A., et al.: MapFIM: memory aware parallelized frequent itemset mining in very large datasets. In: International Conference on Database and Expert Systems Applications. Springer, Cham, pp. 478–495 (2017)Google Scholar
  25. 25.
    Bernecker, T., Cheng, R., Cheung, D.W., et al.: Model-based probabilistic frequent itemset mining. Knowl. Inf. Syst. 37(1), 181–217 (2013)CrossRefGoogle Scholar
  26. 26.
    Wang, S., Wang, G.R.: Frequent items query algorithm for uncertain sensing data. Jisuanji Xuebao (Chin. J. Comput.) 36(3), 571–581 (2013)Google Scholar
  27. 27.
    Li, H.F., Lee, S.Y.: Mining frequent itemsets over data streams using efficient window sliding techniques. Expert Syst. Appl. 36(2), 1466–1477 (2009)CrossRefGoogle Scholar
  28. 28.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  29. 29.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference very Large Data bases, VLDB, vol. 1215, pp. 487–499 (1994)Google Scholar
  30. 30.
    Baccarelli, E., Cordeschi, N., Mei, A., et al.: Energy-efficient dynamic traffic offloading and reconfiguration of networked data centers for big data stream mobile computing: review, challenges, and a case study. IEEE Netw. 30(2), 54–61 (2016)CrossRefGoogle Scholar
  31. 31.
    Wu, G., Zhang, H., Qiu, M., et al.: A decentralized approach for mining event correlations in distributed system monitoring. J. Parallel Distrib. Comput. 73(3), 330–340 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Science & EngineeringShandong Normal UniversityJinanChina

Personalised recommendations