Advertisement

Cluster Computing

, Volume 22, Supplement 4, pp 8379–8386 | Cite as

Pattern synthesis of a practical conformal hydrophone array via second-order cone programming

  • Dali LiuEmail author
  • Lei Li
  • Xinhong Chen
Article
  • 132 Downloads

Abstract

Due to the production and installation error of the antenna array, there is mismatch between the actual array manifold and the ideal. Considering a practical conformal hydrophone array and the shielding of the sonar platform, the isotropy directivity of each sensor may be destroyed seriously, which is a big challenge to beam pattern synthesis. The method of measuring the actual array manifold was proposed, and second-order cone programming (SOCP) was applied to optimize the weights vector of the array sensors. The experiment result shows the irregular directivity of the array sensors. The weights vector was obtained from the measured array manifold and SOCP, and the synthesized beam pattern met the engineering requirements.

Keywords

Array manifold Conformal array Pattern synthesis SOCP 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61601322), Natural Science Foundation of Tianjin City (Grant No. 16JCQNJC01400) and State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201503).

References

  1. 1.
    Chen, S.L., Qin, P.Y., Guo, Y.J.: Generalized 2-D numerical pattern synthesis algorithm for low cross polarization and low sidelobe synthesis. IEEE Antennas Wirel. Propag. Lett. 16, 2578–2581 (2017)CrossRefGoogle Scholar
  2. 2.
    Basit, A., Qureshi, I., Khan, W.: Beam pattern synthesis for an FDA radar with hamming window based non-uniform frequency offset. IEEE Antennas Wirel. Propag. Lett. 16, 2283–2286 (2017)CrossRefGoogle Scholar
  3. 3.
    Han, Q., Pan, M., Gong, S.: Resource management of opportunistic digital array radar antenna aperture for pattern synthesis. IET Radar Sonar Navig. 11(5), 829–837 (2017)CrossRefGoogle Scholar
  4. 4.
    Liu, K., Cheng, Y., Wang, H.: Radiation pattern synthesis for the generation of vortex electromagnetic wave. IET Microw. Antennas Propag. 11(5), 685–694 (2017)CrossRefGoogle Scholar
  5. 5.
    Liu, Y., Huang, X., Xu, K.D.: Pattern synthesis of unequally spaced linear arrays including mutual coupling using iterative FFT via virtual active element pattern expansion. IEEE Trans. Antennas Propag. 65(8), 3950–3958 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zhang, X., He, Z.S., Liao, B.: A2RC: An accurate array response control algorithm for pattern synthesis. IEEE Trans. Signal Process. 65(7), 1810–1824 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhang, X., He, Z., Liao, B.: Pattern synthesis with multi-point accurate array response control. IEEE Trans. Antennas Propag. 65(8), 4075–4088 (2017)CrossRefGoogle Scholar
  8. 8.
    Huang, Z., Zhou, J., Zhang, H.: Full polarimetric sum and difference patterns synthesis for conformal array. Electron. Lett. 51(8), 602–604 (2015)CrossRefGoogle Scholar
  9. 9.
    Zhu, H., Liang, X., Ye, S.: A cylindrically conformal array with enhanced axial radiation. IEEE Antennas Wirel. Propag. Lett. 15, 1653–1656 (2016)CrossRefGoogle Scholar
  10. 10.
    Shahidizandi, S., Seydnejad, S.R.: Blind beamforming for conformal arrays. IEEE Antennas Wirel. Propag. Lett. 16, 940–943 (2016)CrossRefGoogle Scholar
  11. 11.
    Yang, H., Jin, Z., Montisci, G.: Design equations for cylindrically conformal arrays of longitudinal slots. IEEE Trans. Antennas Propag. 64(1), 80–88 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Herve, L., Boyd, S.: Antenna array pattern synthesis via convex optimization. IEEE Trans. Signal Process. 45(3), 526–532 (1997)CrossRefGoogle Scholar
  13. 13.
    Yan, S., Ma, Y., Hou, C.: Optimal array pattern synthesis for broadband arrays. J. Acoust. Soc. Am. 122(5), 2686–96 (2007)CrossRefGoogle Scholar
  14. 14.
    Lobo, M.S., Vandenberghe, L., boyd, S.: Applications of second-order cone programming. Linear Algebra Appl. 284(1), 193–228 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw 11(14), 625–653 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical Engineering and AutomationTianjin Polytechnic UniversityTianjinChina
  2. 2.State Key Laboratory of Acoustics, Institute of AcousticsChinese Academy of SciencesBeijingChina
  3. 3.Physical Engineering SchoolZhengzhou UniversityZhengzhouChina
  4. 4.Tianjin Railway Technical and Vocational CollegeTianjinChina

Personalised recommendations