Advertisement

Cluster Computing

, Volume 22, Supplement 5, pp 12997–13009 | Cite as

Key technology and application of millimeter wave communications for 5G: a survey

  • Xiaoling Xu
  • Mei LiuEmail author
  • Jianbin Xiong
  • Gaowei Lei
Article

Abstract

As mobile communication technology continues to develop, millimeter-wave communication for 5G mobile networks is attracting widespread public attention. Many studies have appeared in the literatures related to millimeter wave mobile broadband communication systems. This paper briefly introduces the development of 5G and millimeter wave communications, analyses several practical designs and implementations of millimeter wave communications for 5G, and proposes some future applications and challenges for 5G.

Keywords

Millimeter wave(mmWave) 5G, Massive MIMO (multiple-input multiple-output) Access and backhaul links Multimedia 

Notes

Acknowledgements

This work is supported by the national natural science foundation of China No. 61473331, Educational Commission of Guangdong Province, China, Project No. 2013KJCX0131, 2013 Top Level Talents Project in “Sailing Plan” of Guangdong Province, Fault Diagnosis of Petrochemical Process and Informatization Control Engineering Open Fund in Guangdong University No. 512030, 2015 Special Fund of Guangdong Province Key Laboratory of Petrochemical Equipment Fault Diagnosis, No. 772719. 2017 Maoming City Technology Planning Projects No. 517235.

References

  1. 1.
    International Telecommunication Union. Assessment of the Global Mobile Broadband Deployments and Forecasts for International Mobile Telecommunications. ITU-R tech. Rep. M.2243-0 (2011)Google Scholar
  2. 2.
    White paper, Cisco Visual Networking Index: Forecast and Methodology, 2016–2021, Cisco VNI Report, September 2017. https://www.cisco.com/c/en/us/solutions/collateral/service provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
  3. 3.
    Khan, F., Pi, Z., Rajagopal, S.: Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication. In: 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1517–1523 (2012)Google Scholar
  4. 4.
    Gohil, A., Modi, H., Patel, S.K.: 5G technology of mobile communication: a survey. In: 2013 International Conference on Intelligent Systems and Signal Processing (ISSP), pp. 288–292Google Scholar
  5. 5.
    Cudak, M., Ghosh, A., Kovarik, T. et al.: Moving towards MMWave-based beyond-4G (B-4G) technology. In: Proc. IEEE Veh. Technol. Soc. Conf. pp. 1–17 (2013)Google Scholar
  6. 6.
    Weiler, R.J., Peter, M., Keusgen, W., Calvanese-Strinati, E., De Domenico, A., Filippini, I., Capone, A., Siaud, I., Ulmer-Moll, A.-M., Maltsev, A., Haustein, T., Sakaguchi, K.: Enabling 5G Backhaul and access with millimeter-waves. In: 2014 European Conference on Networks and Communications (EuCNC), pp. 1–5 (2014)Google Scholar
  7. 7.
    Wang, T., Huang,B.: Millimeter-wave techniques for 5G mobile communications systems: challenges, framework and way forward. In: General Assembly and Scientific Symposium (URSI GASS) 2014 XXXIth URSI, pp. 1–4 (2014)Google Scholar
  8. 8.
    FP7 Integrating Project MiWaveS (ICT 619563). http://www.miwaves.eu/project_overview.html
  9. 9.
    Giordani, M., Mezzavilla, M., Barati, C.N., Rangan, S., Zorzi, M.: Comparative analysis of initial access techniques in 5G mmWave cellular networks. In: 2016 Annual Conference on Information Science and Systems (CISS), pp. 268–273 (2016)Google Scholar
  10. 10.
    Weiler, R.J., Peter, M., Keusgen, W., Sakaguchi, K., Undi, F.: Environment induced shadowing of urban millimeter-wave access links. IEEE Wirel. Commun. Lett. 5(4), 440–443 (2016)CrossRefGoogle Scholar
  11. 11.
    Ohba, N., Takano, K., Kohda, Y., Nakano, D., Yamane, T., Katayama, Y.: Multimedia content-downloading system using millimeter-wave attached memory. Consumer Communications and Networking Conference (CCNC), IEEE, pp. 94–98 (2012)Google Scholar
  12. 12.
    Charbonnier, B., Chanclou, P., Corral, J.L., Duan, G.H. et al.: Photonics for broadband radio communications at 60 GHz in access and home networks. IEEE Microwave Photonics Conference, pp. 5–8 (2008)Google Scholar
  13. 13.
    Hur, S., Kim, T., Love, D.J.: Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans. Commun. 61(10), 4391–4403 (2013)CrossRefGoogle Scholar
  14. 14.
    Niu, Y., Gao, C., Li, Y., Su, L., Jin, D., Zhu, Y., Wu, D.O.: Energy efficient scheduling for mmWave backhauling of small cells in heterogeneous cellular networks. IEEE Trans. Veh. Technol. 66(3), 2674–2687 (2016)CrossRefGoogle Scholar
  15. 15.
    Seppänen, K., Kilpi, J., Paananen, J., Suihko, T., Wainio, P., Kapanen, J.: Multipath routing for mmWave WMN backhaul. IEEE International Conference on Communications Workshops (ICC) 2016, 246–253 (2016)Google Scholar
  16. 16.
    Shariat, M., Kilpi, J., Suihko, T., Miao, H., Kapanen, J., Putkonen, J., Dianati, M.: Radio resource management for heterogeneous millimeter-wave backhaul and access network. In: 2016 IEEE International Conference on Communications Workshops (ICC), pp. 620–625 (2016)Google Scholar
  17. 17.
    FP7 STReP Project E3NETWORK (lCT 317957). https://siliconradar.com/e3network.html
  18. 18.
    FP7 STReP Project CROWD (ICT 318115). http://www.ict-crowd.eu/
  19. 19.
    FP7 ICT-2013-EU-Japan, Project MiWEBA (no. 608637). https://www.miweba.eu/
  20. 20.
    Martel, C., Crepin, T., Gabard, B., Boust, F.: A Q-band Fabry-Perot antenna for access and backhaul communication networks. In: Antennas and Propagation Society International Symposium (APSURSI), IEEE 2014, pp. 107–108 (2014)Google Scholar
  21. 21.
    Bogale, T.E., Le, L.B.: Massive MIMO and mmWave for 5G wireless HetNet: potential benefits and challenges. IEEE Veh. Technol. Mag. 11(1), 64–75 (2016)CrossRefGoogle Scholar
  22. 22.
    Torkildson, E., Madhow, U., Rodwell, M.: Indoor millimeter wave MIMO: feasibility and performance. IEEE Trans. Wirel. Commun. 10(12), 4150–4160 (2011)CrossRefGoogle Scholar
  23. 23.
    Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., Braun, V., Lossow, M., Sternad, M., Apelfriijd, R., Vensson, T.S.: The role of small cells, coordinated multipoint, and massive MlMO in 5G. IEEE Commun. Mag. 52, 44–51 (2014)CrossRefGoogle Scholar
  24. 24.
    Puglielli, A., Townley, A., LaCaille, G., Milovanović, V., Lu, P., Trotskovsky, K., Whitcombe, A., Narevsky, N., Wright, G., Courtade, T., Alon, E., Nikolić, B., Niknejad, A.M.: Design of energy- and cost-efficient massive MIMO arrays. Proc. IEEE 104(3), 586–606 (2016)CrossRefGoogle Scholar
  25. 25.
    Alreshaid, A.T., Hussain, R., Podilchak, S.K., Sharawi, M.S.: A dual-element MIMO antenna system with a mm-wave antenna array. In: 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1–4 (2016)Google Scholar
  26. 26.
    Hussain, M.T., Sharawi, M.S., Podilchack, S., Antar, Y.M.: Closely packed millimeter-wave MIMO antenna arrays with dielectric resonator elements. In: 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1–4 (2016)Google Scholar
  27. 27.
    Vook, F.W., Ghosh, A., Thomas, T.A.: MIMO and beamforming solutions for 5G technology. In: Microwave Symposium (IMS), 2014 IEEE MTT-S International, pp. 1–4 (2014)Google Scholar
  28. 28.
    Cella, T., Orten, P.: Design of a MIMO geometry for high capacity and full coverage mm-wave system. In: 2012 5th International Conference on Computers and Devices for Communication (CODEC), pp. 1–4Google Scholar
  29. 29.
    Wen, Z., Kong, H.: mmWave MIMO channel sounding for 5G. In: 2014 1st International Conference on 5G for Ubiquitous Connectivity (5GU), pp. 192–197 (2014)Google Scholar
  30. 30.
    Brady, J., Behdad, N., Sayeed, A.: Discrete lens array modeling and design for optimum MIMO communications at mm-wave. In: Antennas and Propagation Society International Symposium (APSURSI), IEEE, pp. 1–2 (2012)Google Scholar
  31. 31.
    Wei, L., Hu, R., Qian, Y., Wu, G.: Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wirel. Commun. 21(6), 136–143 (2014)CrossRefGoogle Scholar
  32. 32.
    Roh, W., Seol, J.Y., Park, J., Lee, B., Lee, J., Kim, Y., Cho, J., Cheun, K., Aryanfar, F.: Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag. 52(2), 106–113 (2014)CrossRefGoogle Scholar
  33. 33.
    Kim, T., Park, J., Seol, J.Y., Jeong, S., Cho, J., Roh, W.: Tens of Gbps support with mmWave beamforming systems for next generation communications. In: Global Communications Conference (GLOBECOM), IEEE, pp. 3685–3690 (2013)Google Scholar
  34. 34.
    Bae, J.S. Choi, Y.S., Kim, J.S., Chung, M.Y.: Architecture and performance evaluation of MmWave based 5G mobile communication system. In: 2014 International Conference on Information and Communication Technology Convergence (ICTC), pp. 847–851 (2014)Google Scholar
  35. 35.
    Rajagopal, S., Abu-Surra, S., Pi, Z., Khan, F.: Antenna array design for multi-Gbps mmwave mobile broadband communication. In: Proc. IEEE Global Telecommun. Conf., pp. 1–6 (2011)Google Scholar
  36. 36.
    Khan, F., Pi, Z., Rajagopal, S.: Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication. In: 2012 50th Annual Allerton Conference on Control, and Computing (Allerton), pp. 1517–1523Google Scholar
  37. 37.
    Al-Hourani, A., Chandrasekharan, S., Kandeepan, S.: Path loss study for millimeter wave device-to-device communications in urban environment. In: 2014 IEEE International Conference on Communications Workshops (ICC), pp. 102–107 (2014)Google Scholar
  38. 38.
    Wang, F., Wang, H., Feng, H., Xu, X.: A hybrid communication model of millimeter wave and microwave in D2D network. In: 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5 (2016)Google Scholar
  39. 39.
    Abdallah, A., Doumiati, S.: Hybrid precoding for device-to-device communication at MmWave frequencies. In: European Wireless 2016; 22th European Wireless Conference, pp. 1–6 (2016)Google Scholar
  40. 40.
    Wu, D., Wang, J., Cai, Y., Guizani, M.: Millimeter-wave multimedia communications: challenges, methodology, and applications. IEEE Commun. Mag. 53(1), 232–238 (2015)CrossRefGoogle Scholar
  41. 41.
    Scott-Hayward, S., Garcia-Palacios, E.: Multimedia resource allocation in mmWave 5G networks. IEEE Commun. Mag. 53(1), 240–247 (2015)CrossRefGoogle Scholar
  42. 42.
    Ma, B., Niu, B., Wang, Z., Wong, V.W.S.: Joint power and channel allocation for multimedia content delivery using millimeter wave in smart home networks. In: Global Communications Conference (GLOBECOM), 2014 IEEE, pp. 4745–4750Google Scholar
  43. 43.
    Kim, J, Kim, I.G.: Distributed antenna system-based millimeter-wave mobile broadband communication system for high speed trains. In: 2013 International Conference on ICT Convergence (ICTC), pp. 218–222Google Scholar
  44. 44.
    Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M.: Millimeter ware mobile communication for 5G cellular: it will work. IEEE Access 1, 335–349 (2013)CrossRefGoogle Scholar
  45. 45.
    Karjalainen, J., Nekovee, M., Benn, H., Kim, W. Park, J., Sungsoo, H.: Challenges and Opportunities of mm-Wave communication in 5G networks. In: 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), pp. 372–376 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoling Xu
    • 1
  • Mei Liu
    • 1
    Email author
  • Jianbin Xiong
    • 1
  • Gaowei Lei
    • 1
  1. 1.Guangdong University of Petrochemical TechnologyMaomingChina

Personalised recommendations