Advertisement

Cluster Computing

, Volume 22, Supplement 1, pp 1459–1467 | Cite as

Depth from defocus (DFD) based on VFISTA optimization algorithm in micro/nanometer vision

  • Yongjun LiuEmail author
  • Yangjie Wei
  • Yi Wang
Article
  • 107 Downloads

Abstract

In the three-dimensional (3D) morphological reconstruction of micro/nano-scale vision, the global depth from defocus algorithm (DFD) transforms the depth information of the scene into a dynamic optimization problem to solve. In order to improve the problem of dynamic optimization in the recovery process of global DFD, a variable-step-size fast iterative shrinkage-thresholding algorithm (VFISTA) is proposed. The traditional iterative shrinkage-thresholding algorithm (ISTA) is often used to solve this dynamic optimization problem in the global DFD method. The ISTA algorithm is an extension of the gradient descent method, which is close to the minimal value point of the optimization process, and the convergence speed is slow. What is more, the ISTA algorithm uses fixed step length in the iterative process, The search direction tend to be “orthogonal”, prone to “saw tooth” phenomenon, so close to the minimum point when the convergence rate is slower. First, the VFISTA algorithm joins the acceleration operator on the basis of the ISTA algorithm. Further, it combines linear search method to find the optimal iteration length, and changes the limit of the ISTA algorithm step fixed. Finally, it is applied to the depth measurement of defocus scene in micro/nanometer scale vision. The experimental results show that the proposed fast depth from defocus algorithm based on VFISTA has faster convergent speed. Moreover, the precision of the measurement is obviously improved in micro/nanometer scale vision.

Keywords

Micro/nanometer vision Depth from defocus algorithm (DFD) Dynamic optimization Acceleration operator Linear search 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Plan (2016YFC0101500) and the Fundamental Research Funds for the Central Universities (N161602002), the Natural Science Foundation of Jiangsu Province under Grant No. 15KJB520001. This work was partly supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK2012209, Science and Technology Program of Suzhou in China under Grant No. SYG201409. Finally, the authors would like to thank the anonymous reviewers for their constructive advice.

References

  1. 1.
    Yin, C.Y.: Determining residual nonlinearity of a high-precision heterodyne interferometer. Opt. Eng. 38(8), 1361–1365 (1999).  https://doi.org/10.1117/1.602178 CrossRefGoogle Scholar
  2. 2.
    Pentland, A.P.: A new sense for depth of field. IEEE Trans. Pattern Mach. Intell. 9(4), 523–531 (1987)CrossRefGoogle Scholar
  3. 3.
    Nayar, S.K., Watanabe, M., Noguchi, M.: Real time focus range sensor. IEEE Trans. Pattern Mach. Intell. 18(12), 1186–1198 (1996).  https://doi.org/10.1109/34.546256 CrossRefGoogle Scholar
  4. 4.
    Subbarao, M., Surya, G.: Depth from defocus: a spatial domain approach. Int. J. Comput. Vis. 13(3), 271–294 (1994).  https://doi.org/10.1109/34.546256 CrossRefGoogle Scholar
  5. 5.
    Favaro, P.: Shape from Focus/Defocus. Washington University, St. Louis (2000)Google Scholar
  6. 6.
    Li, C., Su, S., Matsushita, Y., et al.: Bayesian depth-from-defocus with shading constraints. IEEE Trans. Image Process. 25(2), 589–600 (2016).  https://doi.org/10.1109/TIP.2015.2507403 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bailey, S.W., Echevarria, J.I., Bodenheimer, B., et al.: Fast depth from defocus from focal stacks. Vis. Comput. 31(12), 1697–1708 (2015).  https://doi.org/10.1007/s00371-014-1050-2 CrossRefGoogle Scholar
  8. 8.
    Tao, M.W., Srinivasan, P.P., Hadap, S., et al.: Shape estimation from shaping, defocus, and correspondence using light-field angular coherence. IEEE Trans. Pattern Mach. Intell. 39(1), 1–15 (2015)Google Scholar
  9. 9.
    Liu, X., Peng, K., Chen, Z., et al.: A new capacitive displacement sensor with nanometer accuracy and long range. IEEE Sens. J. 16(8), 2306–2316 (2016).  https://doi.org/10.1109/JSEN.2016.2521681 CrossRefGoogle Scholar
  10. 10.
    Rembe, C., Muller, R.S.: Measurement system for full three-dimensional motion characterization of MENS. J. Microelectromech. Syst. 11(5), 479–488 (2002).  https://doi.org/10.1109/JMEMS.2002.803285 CrossRefGoogle Scholar
  11. 11.
    Sigal, Y.M., Speer, C.M., Babcock, H.P., et al.: Mapping synaptic input fields of neurons with super-resolution imaging. Cell 163(2), 493–505 (2015).  https://doi.org/10.1016/j.cell.2015.08.033 CrossRefGoogle Scholar
  12. 12.
    Beliveau, B.J., Boettiger, A.N., Avendano, M.S., et al.: Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat. Commun. 6, 7147 (2015).  https://doi.org/10.1038/ncomms8147 CrossRefGoogle Scholar
  13. 13.
    Wei, Y., Wu, C., Wang, Y., et al.: Diffusion-based three-dimensional reconstruction of complex surface using monocular vision. Opt. Express 23(16), 247092 (2015).  https://doi.org/10.1364/OE.23.030364 Google Scholar
  14. 14.
    Wei, Y., Wu, C., Dong, Z., et al.: Global shape reconstruction of the bended AFM cantilever. IEEE Trans. Nanotechnol. 11(4), 713–719 (2012).  https://doi.org/10.1109/TNANO.2012.2193619 CrossRefGoogle Scholar
  15. 15.
    Favaro, P., Soatto, S., Burger, M., et al.: Shape from defocus via diffusion. IEEE Trans. Pattern Mach. Intell. 30(3), 518–531 (2008)CrossRefGoogle Scholar
  16. 16.
    Favaro, P., Mennucci, A., Soatto, S.: Observing shape from defocused images. Int. J. Comput. Vis. 52(1), 25–43 (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kwon, S., Wang, J., Shim, B.: Multipath matching pursuit. IEEE Trans. Inf. Theory 60(5), 2986–3001 (2014).  https://doi.org/10.1109/TIT.2014.2310482 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Wei, Y., Wu, C., Wang, W.: Shape reconstruction based on a new blurring model at the micro/nanometer scale. Sensors 16, 302 (2016).  https://doi.org/10.3390/s16030302 CrossRefGoogle Scholar
  19. 19.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009).  https://doi.org/10.1137/080716542 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zibetti, M.V.W., Helou, E.S., Pipa, D.R.: Accelerating overrelaxed and monotone fast iterative shrinkage-thresholding algorithms with line search for sparse reconstructions. IEEE Trans. Image Process. 26(7), 3569–3578 (2017).  https://doi.org/10.1109/TIP.2017.2699483 MathSciNetzbMATHGoogle Scholar
  21. 21.
    Zibetti, M.V.W., Pipa, D.R., De Pierro, A.R.: Fast and exact unidimensional L2–L1 optimization as an accelerator for iterative reconstruction algorithms. Digit. Signal Process. 48, 178–187 (2016).  https://doi.org/10.1016/j.dsp.2015.09.009 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Computer Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.Department of Computer Science and EngineeringChangshu Institute of TechnologySuzhouChina
  3. 3.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations