Cluster Computing

, Volume 22, Supplement 3, pp 6019–6030 | Cite as

Research and application of biological potency soft sensor modeling method in the industrial fed-batch chlortetracycline fermentation process

  • Yu-mei Sun
  • Ni Du
  • Qiao-yan Sun
  • Xiang-guang ChenEmail author
  • Jian-wen Yang


The potency of fermentation broth is one of the key parameters reflect the yield and quality of fermentation products of chlortetracycline (CTC). But so far, there is no instrument available on-line detection of CTC potency. All the tests are done by manual off-line testing, it takes several hours to sample and analyze the results from a fermentation tank (the production process usually has dozens of small, large fermenters). The use of analytical results to control the amount of operation will lead to severe lag. This paper combines self-organizing feature map (SOM) neural network with accurate classification of data and least squares support vector machine (LSSVM) algorithm with strong described the nonlinear characteristics. The SOM–LSSVM global modeling method of forecasting CTC fermentation potency is establish in this paper. According to the characteristics of nonlinear CTC fermentation process, just-in-time learning-recursive least squares support vector regression (JITL–RLSSVR) is used to perform local real-time modeling and 10-folding cross validation, and a hybrid soft sensor modeling method (JITL–RLSSVR + SOM–LSSVM) for online prediction of CTC fermentation potency is proposed in this paper. Field experiments show that this method can obtain more accurate potency prediction value, and it can meet the requirements of the production process.


Potency of chlortetracycline (CTC) fermentation broth Hybrid soft sensor models SOM (self-organizing feature map) JITL (just-in-time learning) LSSVM (least squares support vector machine) RLSSVR (recursive least-SOM-LSSVM-JITL-RLSSVR) 



This work is financially supported by Natural Science Foundation (No. ZR2016FM28) of Shandong Province in 2016. We also thank Charoen Pokphand Group for their financial support and for providing the industrial datasets offed-batch CTC fermentation process.


  1. 1.
    Fu, J.: The Balancing Process Optimization and Metabolic Parameters Related to the Calculation of Chlortetracycline Fermentation Process. East China University of Science and Technology, Shanghai (2003) (Chinese)Google Scholar
  2. 2.
    Sarmah, A.K., Meyer, M.T., Boxall, A.: A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5), 725–759 (2006)CrossRefGoogle Scholar
  3. 3.
    Shi, Z., Feng, P.: Fermentation Process Analysis, Control and Measurement Technology, pp. 1–2. Chemical Industry Press, Beijing (2010) (Chinese)Google Scholar
  4. 4.
    Cinar, A., Parulekar, S.J., Undey, C., et al.: Batch Fermentation: Modeling: Monitoring, and Control. CRC Press, New York (2003)Google Scholar
  5. 5.
    Nomikos, P., MacGregor, J.F.: Multivariate SPC charts for monitoring batch processes. Technometrics 37(1), 41–59 (1995)CrossRefGoogle Scholar
  6. 6.
    Li, J., Bao, J., Chen, Y.: Assay of the fermentation concentration of active substance in the fermentation broth. J. Hebei Acad. Sci. 22(1), 52–53, 57 (2005) (Chinese)Google Scholar
  7. 7.
    Xu, Y., Peng, W., Wang, D., et al.: Determination of lipstatin concentration in fermentation broth by RP-HPLC. J. Shenyang Pharm. Univ. 30(1), 31–34 (2013) (Chinese)Google Scholar
  8. 8.
    Li, H., Liu, L., Guan, L.: Rapid determination of streptomycin in broth by spectrophotometry. Sci. Technol. Eng. 13(20), 6011–6014 (2013) (Chinese)Google Scholar
  9. 9.
    Zhang, Y., Ni, Z., Liu, L., et al.: Rapid detection of bacitracin in fermentation broth by spectrophotometry. China Brew. (4), 171–172 (2011) (Chinese)Google Scholar
  10. 10.
    Chen, L.: Study on the fermentation process technology of chlortetracycline. Strait Pharm. J. 22(6), 23–25 (2010) (Chinese)Google Scholar
  11. 11.
    Wang, P.: Study on the Breeding and Fermentation Process Optimization of CTC-Producing Strains. Inner Mongolia University, Hohhot (2013) (Chinese)Google Scholar
  12. 12.
    He, J., Ruan, C., Tu, X., et al.: Study on determination of Honggumycin potency in fermentation by biological method. Sci. Technol. Food Ind. 32(11), 411–442 (2011) (Chinese)Google Scholar
  13. 13.
    Gao, F., Chen, T., Gou, L., et al.: Effect of Vitreoscilla hemoglobin gene (vgb) expression on growth and metabolism of Streptomyces venezuelae var. qinlingensis and its effect on Zuelacmycin valence. J. Agric. Biotechnol. 18(6), 1182–1188 (2010) (Chinese)Google Scholar
  14. 14.
    Liao, A., Chen, K., Zhang, H.: Microbiological assay of gentamicin in broth with paper discuss method. Pharm. Biotechnol. 11(3), 187–189 (2004) (Chinese)Google Scholar
  15. 15.
    Gao, R., Zhao, Y.: A novel approach for accurate estimating the potency of antibiotics in fermentative fluid. J. Shandong Univ. 40(6), 112–116 (2005) (Chinese)Google Scholar
  16. 16.
    Tedeschi, L.O., Kononoff, P.J., Karges, K., et al.: Effects of chemical composition variation on the dynamics of ruminal fermentation and biological value of corn milling (co)products. J. Dairy Sci. 92(1), 401–413 (2009)CrossRefGoogle Scholar
  17. 17.
    Abecia-Soria, L., Pezoa-García, N.H., Amaya-Farfan, J.: Soluble albumin and biological value of protein in cocoa (Theobroma cacao L.) beans as a function of roasting time. J. Food Sci. 70(4), 294–298 (2005)CrossRefGoogle Scholar
  18. 18.
    Han, J.C., Chen, G.H., Zhang, J.L., et al.: Relative biological value of 1\(\alpha \)-hydroxycholecalciferol to 25-hydroxycholecalciferol in broiler chicken diets. Poult. Sci. 96(7), 2330–2335 (2017)CrossRefGoogle Scholar
  19. 19.
    Mistry, B., Patel, R.V., Keum, Y.-S., et al.: Evaluation of the biological potencies of newly synthesized berberine derivatives bearing benzothiazole moieties with substituted functionalities[J]. J. Saudi Chem. Soc. 21(2), 210–219 (2017)CrossRefGoogle Scholar
  20. 20.
    Jatkauskas, J., Vrotniakiene, V.: The influence of application of a biological additive on the fermentation and nutritive value of Lucerne silage. Zemdirb. Agric. 96(4), 197–208 (2009)Google Scholar
  21. 21.
    Tu, Q., Zhao, H., Chen, J.: Optimization of medium for biological potency of fermentation supernatant of Paenibacillus brasilensis YS-1. Minerva. Biotecnol. 27(2), 93–98 (2015)Google Scholar
  22. 22.
    Chen, B., Li, R., Guo, Y., et al.: Purification and preparation of moenomycin A from fermentation broth by multidimensional chromatography. Chromatographia 79(11—-12), 667–674 (2016)CrossRefGoogle Scholar
  23. 23.
    Kobayashi, M., Kanasaki, R., Sato, I., et al.: FR207944, an antifungal antibiotic from Chaetomium sp. no. 217—I. Taxonomy, fermentation, and biological properties. Biosci. Biotechnol. Biochem. 69(3), 515–521 (2005)CrossRefGoogle Scholar
  24. 24.
    Wan, F., Feng, F., Huang, Y., et al.: Development of a titer measuring system based on light emitting diodes. Mod. Instrum. Med. Treat. 22(1), 13–15 (2016) (Chinese)Google Scholar
  25. 25.
    He, K., Zhao, L., Wang, J., et al.: Soft-sensor modeling method in a fermentation process based on the samples of a sparse Gaussian process. J. Beijing Univ. Chem. Technol. (Nat. Sci.) 41(3), 108–113 (2014) (Chinese)Google Scholar
  26. 26.
    Yu, T., Wang, J., He, K., et al.: Staged soft-sensor modeling method for fermentation process based on MPCA-GP. Chin. J. Sci. Instrum. 34(12), 2703–2708 (2013) (Chinese)Google Scholar
  27. 27.
    Tang, H.S., Xue, S.T., Chen, R., et al.: Online weighted LS-SVM for hysteretic structural system V identification. Eng. Struct. 28(12), 1728–1735 (2006)CrossRefGoogle Scholar
  28. 28.
    Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)CrossRefGoogle Scholar
  29. 29.
    Ismail, S., Shabri, A., Samsudin, R.: A hybrid model of self-organizing maps (SOM) and least square support vector machine (LSSVM) for time-series forecasting. Expert Syst. Appl. 38(8), 10574–10578 (2011)CrossRefGoogle Scholar
  30. 30.
    Kalteh, A.M., Hjorth, P., Berndtsson, R.: Review of the self-organizing map (SOM) approach in water resources: analysis, modelling and application. Environ. Model. Softw. 23(7), 835–845 (2008)CrossRefGoogle Scholar
  31. 31.
    Mendes, E.M.A.M., Billings, S.A.: An alternative solution to the model structure selection problem. IEEE Trans. Syst. Man Cybern. A 31(6), 597–608 (2001)CrossRefGoogle Scholar
  32. 32.
    Yan, W., Shao, H., Wang, X.: Soft sensing modeling based on support vector machine and Bayesian model selection. Comput. Chem. Eng. 28(8), 1489–1498 (2004)CrossRefGoogle Scholar
  33. 33.
    Liu, G., Zhou, D., Xu, H., et al.: Model optimization of SVM for a fermentation soft sensor. Expert Syst. Appl. 37(4), 2708–2713 (2010)CrossRefGoogle Scholar
  34. 34.
    Okada, T., Kaneko, H., Funatsu, K.: Development of a model selection method based on the reliability of a soft sensor model. Sonklanakarin J. Sci. Technol. 34(2), 217 (2010)Google Scholar
  35. 35.
    Smith, R.S., Doyle, J.C.: Model validation: a connection between robust control and identification. IEEE Trans. Autom. Control 37(7), 942–952 (1992)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lindgren, F., Hansen, B., Karcher, W., et al.: Model validation by permutation tests: applications to variable selection. J. Chemom. 10(5–6), 521–532 (1996)CrossRefGoogle Scholar
  37. 37.
    Billings, S.A., Zhu, Q.M.: Nonlinear model validation using correlation tests. Int. J. Control 60(6), 1107–1120 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yu-mei Sun
    • 1
  • Ni Du
    • 2
  • Qiao-yan Sun
    • 1
  • Xiang-guang Chen
    • 2
    Email author
  • Jian-wen Yang
    • 2
  1. 1.College of Electronic EngineeringYantai Nanshan UniversityLongkouPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations