Development of a mobile web services discovery and composition model

  • Cheyma Ben NjimaEmail author
  • Youssef Gamha
  • Chirine Ghedira Guegan
  • Lotfi Ben Romdhane


Mobile computing, a challenging paradigm aiming at using and providing services anywhere and anytime, places great challenges on dynamic service discovery and composition. These challenges are specially related to mobile context (terminal constraints, user mobility, network connection, etc.) In fact, the discovery model began with semantically rewriting and enriching services and user query with OWL-S ontology and its non-functional properties (context, QoWS and user preferences). Then a similarity calculation step has been performed between the enriched user query and the set of advertised web services to generate the most relevant ones. Furthermore, the resulting services will be the inputs of a mobile web service composition process. Mobile web service composition is based on a formal model aiming to compute dynamic context (Location, Bandwidth) uncertainty and web service sensitivity. These values contribute to select web services that will form the composition plan. The web service composition algorithm suggests to the end user, the most relevant plans sorted in ascending order according to their total sensitivity value. The implementation and comprehensive simulation experiments show the efficiency of the mobile web service discovery and composition models.


Mobile web services Dynamic context Semantic discovery Composition Uncertainty Web service sensitivity 


  1. 1.
    Farley, P., Capp, M.: Mobile web services. BT Technol. J. 23(2), 202–213 (2005)CrossRefGoogle Scholar
  2. 2.
    Sôderholm, L.: Owl-s: Web Ontology Language for Services. Technical Report. University of Helsinki, Faculty of Science, Department of Computer Science (2012)Google Scholar
  3. 3.
    Alférez, G., Pelechano, V.: Facing Uncertainty in Web Service Compositions. In: IEEE 20th International Conference on Web Services (2013)Google Scholar
  4. 4.
    Ahmed, M., Minjie, Z.: Multi-objective service composition in uncertain environments. IEEE Trans. Serv. Comput. 1 (2008)Google Scholar
  5. 5.
    PengWei, W., ZhiJun, D., ChangJun, J., MengChu, Z.: Automatic Web Service Composition Based on Uncertainty Execution Effects. In: IEEE (2015)Google Scholar
  6. 6.
    Zhang, Y., Wang, J., Yan, Y.: Context-Aware Generic Service Discovery and Service Composition. In: IEEE International Conference on Mobile Services (2014)Google Scholar
  7. 7.
    Mokhtar, S.B., Fournier, D., Georgantas, N., Issarny, V.: EASY: efficient semantic service discovery in pervasive computing environments with QoS and context support. J. Syst. Softw. 81(5), 785–808 (2007)CrossRefGoogle Scholar
  8. 8.
    Eyhab, A., Mahmoud, H.Q.: MobiEureka: an approach for enhancing the discovery of mobile web services. Pers. Ubiquit. Comput. 14, 609–620 (2009)Google Scholar
  9. 9.
    Khalid, E., Hossam, S.H., Patrick, M.: DaaS: cloud-based mobile web service discovery. Pervasive Mob. Comput. 13, 67–84 (2014)Google Scholar
  10. 10.
    Saadon, N., Mohamad, R.: Web Services Discovery Approach for Mobile Computing. In: Acadeumia (2016)Google Scholar
  11. 11.
    Martin, D., Burstein, M., Hobbs, J.: Owl-s: Semantic Markup for Web Services. In: W3C Member Submission, vol. 22 (2004)Google Scholar
  12. 12.
    Fensel, D., Bussler, C.: The web service modeling framework wsmf. Electron. Commer. Res. Appl. 1, 113–137 (2002)CrossRefGoogle Scholar
  13. 13.
    Besen, R., Sequiera, f.: A Mechanism for Semantic Web Service Discovery in Mobile Environments. In: The Tenth International Conference on Networks (2011)Google Scholar
  14. 14.
    Peng, R., Zhengkun, Wang, L.: A Survey on Web Service Composition. In: 4th International Conference on Wireless Communications, Networking and Mobile Computing (2008)Google Scholar
  15. 15.
    Mcheick, H., Hannech, A.: Semantic Web Service Adaptation and composition Method. In: The Eighth International Conference on Internet and Web Applications and Services (2013)Google Scholar
  16. 16.
    Bhuvaneswari, A., Karpagam, G.R.: Reengineereing Semantic web Service Composition in a Mobile Environment. In: International Conference on Recent Trends in Information, Telecommunication and Computing, IEEE (2010)Google Scholar
  17. 17.
    Ou, R., Wang, W., Gong, X., Chen, C., Ma, J.: A Service Composition Method for Mobile Environment. In: IEEE, China (2009)Google Scholar
  18. 18.
    Giuseppe, D., Massimiliano, D., Massimo, M., Fabio, P.: Automatic Workflows Composition of Mobile Services. In: ICWS (2007)Google Scholar
  19. 19.
    Mcheick, H., Hannech, A.: Modèle de composition des services web sémantiques par orchestration à la demande. In: Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering (CCECE 12) (2012)Google Scholar
  20. 20.
    Keidl, M., Kemper, A.: Towards Context-Aware Adaptable Web Services. In: The 13th international World Wide Web Conference on Alternate Track Papers and Posters, pp. 55–65 (2004)Google Scholar
  21. 21.
    Qian, Z., Wang, Z., Xu, T., Lu, S.: A dynamic service composition schema for pervasive computing. J. Intell. Manuf. 23, 1271–1280 (2010)CrossRefGoogle Scholar
  22. 22.
    Mokhtar, S.B., Fournier, D., Georgantas, N., Issarny, V.: Context-aware service composition in pervasive computing environments. Rapid Integration of Software Engineering Techniques, vol. 3943, pp. 129–144. Apringer, New York (2006)CrossRefGoogle Scholar
  23. 23.
    Sousa, J., Carrapatoso, E., Fonseca, B., Pimentel, M., Bulcão-Neto, R.: Composition of context aware mobile services using a semantic context model. Int. J. Adv. Softw. 2, 275–287 (2006)Google Scholar
  24. 24.
    Njima, C.B., Ghedira Guegan, C., Romdhane, L.B.: MobiDisc: SemanticWeb Service Discovery Approach in Mobile Environment. In: ICSOC, Paris (2014)Google Scholar
  25. 25.
    Njima, C.B., Gamha, y., Romdhane, L.B.: A Probabilistic Model for Web Service Composition in Uncertain Mobile Contexts. In: AICCA, IEEE, Agadir (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mars Research LabUniversity of SousseSousseTunisia
  2. 2.Magellan, University Lyon 3LyonFrance

Personalised recommendations