Performance evaluation of secret sharing schemes with data recovery in secured and reliable heterogeneous multi-cloud storage

  • Andrei TchernykhEmail author
  • Vanessa Miranda-López
  • Mikhail Babenko
  • Fermin Armenta-Cano
  • Gleb Radchenko
  • Alexander Yu. Drozdov
  • Arutyun Avetisyan


Properties of redundant residue number system (RRNS) are used for detecting and correcting errors during the data storing, processing and transmission. However, detection and correction of a single error require significant decoding time due to the iterative calculations needed to locate the error. In this paper, we provide a performance evaluation of Asmuth-Bloom and Mignotte secret sharing schemes with three different mechanisms for error detecting and correcting: Projection, Syndrome, and AR-RRNS. We consider the best scenario when no error occurs and worst-case scenario, when error detection needs the longest time. When examining the overall coding/decoding performance based on real data, we show that AR-RRNS method outperforms Projection and Syndrome by 68% and 52% in the worst-case scenario.


Storage Reliability Residue number system 



The work is partially supported by Russian Federation President Grant SP-1215.2016, and Russian Foundation for Basic Research (RFBR) 18-07-01224.


  1. 1.
    Tchernykh, A., Schwiegelsohn, U., Alexandrov, V., Talbi, E.: Towards understanding uncertainty in cloud computing resource provisioning. Proc. Comput. Sci. 51, 1772–1781 (2015). CrossRefGoogle Scholar
  2. 2.
    Tchernykh, A., Schwiegelsohn, U., Talbi, E., Babenko, M.: Towards understanding uncertainty in cloud computing with risks of confidentiality, integrity, and availability. J. Comput. Sci. (2016). Google Scholar
  3. 3.
    Tchernykh, A., Babenko, M., Chervyakov, N., Cortés-Mendoza, J. M., Kucherov, N., Miranda-López, V., Radchenko, G.: Towards mitigating uncertainty of data security breaches and collusion in cloud computing. In: Database and Expert Systems Applications (DEXA), 2017 28th International Workshop on, pp. 137–141. IEEE. (2017).
  4. 4.
    Nelson, V.P.: Fault-tolerant computing: fundamental concepts. Computer 23(7), 19–25 (1990). CrossRefGoogle Scholar
  5. 5.
    Lin, S., Costello, D.J.: Error Control Coding, 2. Prentice Hall, Englewood Cliffs (2004)zbMATHGoogle Scholar
  6. 6.
    Barsi, F., Maestrini, P.: Error correcting properties of redundant residue number systems. IEEE Trans. Comput. 100(3), 307–315 (1973). MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Mandelbaum, D.: On a class of arithmetic codes and a decoding algorithm. IEEE Trans. Inf. Theory 22(1), 85–88 (1976). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Szabo, N.S., Tanaka, R.I.: Residue arithmetic and its applications to computer technology. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  9. 9.
    Etzel, M., Jenkins, W.: Redundant residue number systems for error detection and correction in digital filters. IEEE Trans. Acoust. Speech Signal Process. 28(5), 538–545 (1980). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Watson, R.W., Hastings, C.W.: Self-checked computation using residue arithmetic. Proc. IEEE 54(12), 1920–1931 (1966). CrossRefGoogle Scholar
  11. 11.
    Krishna, H., Lin, K.Y., Sun, J.D.: A coding theory approach to error control in redundant residue number systems. I. Theory and single error correction. IEEE Trans. Circ. Syst. II 39(1), 8–17 (1992). CrossRefzbMATHGoogle Scholar
  12. 12.
    Tay, T. F., & Chang, C. H.: A new algorithm for single residue digit error correction in Redundant Residue Number System. In: Circuits and Systems (ISCAS), 2014 IEEE International Symposium on, pp. 1748–1751. IEEE. (2014).
  13. 13.
    Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theory 29, 208–210 (1983). MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mignotte, M.: How to Share a Secret. In: Beth, T. (ed.) Cryptography. EUROCRYPT 1982. Lecture Notes in Computer Science, col 149. Springer, Berlin. pp. 371–375 (1982). doi:
  15. 15.
    Ţiplea, F., Drăgan, C.: A necessary and sufficient condition for the asymptotic idealness of the GRS threshold secret sharing scheme. Inf. Process. Lett. 114(6), 299–303 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability, obfuscation, and encryption to multi-cloud storage systems. J. Netw. Comput. Appl. 59, 208–218 (2016). CrossRefGoogle Scholar
  17. 17.
    Chessa, S., Maestrini, P.: Dependable and Secure data storage and retrieval in mobile, wireless networks. In: 2003 International Conference on Dependable Systems and Networks. Proceedings. pp. 207–216 (2003)Google Scholar
  18. 18.
    Chervyakov, N., Babenko, M., Tchernykh, A., Kucherov, N., Miranda-López, V., Cortés-Mendoza, J.M.: AR-RRNS: configurable, scalable and reliable systems for internet of things to ensure security. Futur. Gener. Comput. Syst. (2017). Google Scholar
  19. 19.
    Dworkin M.: SHA-3 standard: permutation-based hash and extendable-output functions. (2015). doi:
  20. 20.
    Tay, T.F., Chang, C.H.: A non-iterative multiple residue digit error detection and correction algorithm in RRNS. IEEE Trans. Comput. 65(2), 396–408 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Chervyakov, N.I., Lyakhov, P.A., Babenko, M.G., Garyanina, A.I., Lavrinenko, I.N., Lavrinenko, A.V., Deryabin, M.A.: An efficient method of error correction in fault-tolerant modular neurocomputers. Neurocomputing. 205, 32–44 (2016). CrossRefGoogle Scholar
  22. 22.
    Babenko, M., Kucherov, N., Tchernykh, A., Chervyakov, N., Nepretimova, E., & Vashchenko, I.: Development of a control system for computations in BOINC with homomorphic encryption in residue number system. In: BOINC:FAST 2017: Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development. CEUR-WS. 1973, pp. 78–84 (2017)Google Scholar
  23. 23.
    Chervyakov, N.I., Lyakhov, P.A., Babenko, M.G., Lavrinenko, I.N., Lavrinenko, A.V., Nazarov, A.S.: The architecture of a fault-tolerant modular neurocomputer based on modular number projections. Neurocomputing 272, 96–107 (2018)CrossRefGoogle Scholar
  24. 24.
    Su, C.C., Lo, H.Y.: An algorithm for scaling and single residue error correction in residue number systems. IEEE Trans. Comput. 39(8), 1053–1064 (1990). CrossRefGoogle Scholar
  25. 25.
    Dimauro, G., Impedovo, S., Pirlo, G.: A new technique for fast number comparison in the residue number system. IEEE Trans. Comput. 42(5), 608–612 (1993). MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wang, Y., Song, X., & Aboulhamid, M.: A new algorithm for RNS magnitude comparison based on new Chinese remainder theorem II. In: Proceedings. Ninth Great Lakes Symposium on VLSI. IEEE. pp. 362–365 (1999).
  27. 27.
    Goh, V.T., Siddiqi, M.U.: Multiple error detection and correction based on redundant residue number systems. IEEE Trans. Commun. 56(3), 325–330 (2008). CrossRefGoogle Scholar
  28. 28.
    Haron, N.Z., Hamdioui, S.: Redundant residue number system code for fault-tolerant hybrid memories. ACM J. Emerg.Technol. Comput. Syst. (JETC) 7(1), 4 (2011). Google Scholar
  29. 29.
    Yau, S.S., Liu, Y.C.: Error correction in redundant residue number systems. IEEE Trans. Comput. 22(1), 5–11 (1973). MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Chang, C.H., Molahosseini, A.S., Zarandi, A.A.E., Tay, T.F.: Residue number systems: a new paradigm to datapath optimization for low-power and high-performance digital signal processing applications. IEEE Circuits Syst. Mag. 15, 26–44 (2015). CrossRefGoogle Scholar
  31. 31.
    Gomathisankaran, M., Tyagi, A., Namuduri, K.: HORNS: A homomorphic encryption scheme for Cloud Computing using Residue Number System. In: 2011 45th Annual Conference on Information Sciences and Systems (CISS). pp. 1–5 (2011).
  32. 32.
    Miranda-López, V., Tchernykh, A., Cortés-Mendoza, J. M., Babenko, M., Radchenko, G., Nesmachnow, S., & Du, Z.: Experimental Analysis of Secret Sharing Schemes for Cloud Storage Based on RNS. In: Latin American High Performance Computing Conference. Springer, Cham. pp. 370–383 (2017)Google Scholar
  33. 33.
    Quisquater, M., Preneel, B., & Vandewalle, J.: On the security of the threshold scheme based on the Chinese remainder theorem. In: Public Key Cryptography. pp. 199–210 (2002).
  34. 34.
    Tentu, A.N., Venkaiah, V.C., Prasad, V.K.: CRT based multi-secret sharing schemes: revisited. Int. J. Secur. Netw. 13(1), 1–9 (2018). CrossRefGoogle Scholar
  35. 35.
    Kaya, K., Selçuk, A.A.: Threshold cryptography based on Asmuth-Bloom secret sharing. Inf. Sci. 177, 4148–4160 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Drăgan, C.C., Ţiplea, F.L.: Distributive weighted threshold secret sharing schemes. Inf. Sci. 339, 85–97 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Barzu, M., Ţiplea, F.L., Drăgan, C.C.: Compact sequences of co-primes and their applications to the security of CRT-based threshold schemes. Inf. Sci. 240, 161–172 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Tchernykh, A., Babenko, M., Chervyakov, N., Miranda-López, V., Kuchukov, V., Cortés-Mendoza, J.-M., Deryabin, M., Kucherov, N., Radchenko, G., Avetisyan, A.: AC-RRNS: Anti-Collusion Secured Data Sharing Scheme for Cloud Storage. Int. J. Approx. Reason. 102, 60–73 (2018). MathSciNetCrossRefGoogle Scholar
  39. 39.
    thinkBoradband (2018). Retrieved from
  40. 40.
    Drăgan, C.C., Tiplea, F.L.: On the asymptotic idealness of the Asmuth-Bloom threshold secret sharing scheme. Inf. Sci. (2018). MathSciNetGoogle Scholar
  41. 41.
    Muhammad, Y.I., Kaiiali, M., Habbal, A., Wazan, A.S., Sani Ilyasu, A.: A secure data outsourcing scheme based on Asmuth-Bloom secret sharing. Enterpr. Inf. Syst. 10(9), 1001–1023 (2016). CrossRefGoogle Scholar
  42. 42.
    Harn, L., Hsu, C., Zhang, M., He, T., Zhang, M.: Realizing secret sharing with general access structure. Inf. Sci. 367, 209–220 (2016). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CICESE Research CenterEnsenadaMexico
  2. 2.North-Caucasus Federal UniversityStavropolRussia
  3. 3.South Ural State UniversityChelyabinskRussia
  4. 4.Moscow Institute of Physics and TechnologyMoscowRussia
  5. 5.Institute for System ProgrammingMoscowRussia

Personalised recommendations