A novel parallel image encryption algorithm based on chaos

  • Ünal Çavuşoğlu
  • Sezgin Kaçar


With rapid technology development, data sizes are increasing and more powerful hardware structures are needed to process these data. An alternative solution for this process is to parallel the transactions to be realized, to provide the time gain, increase the efficiency and reduce the transaction costs. In this article, a new chaos-based parallel encryption algorithm design is presented to meet this requirements. In the study, a new random number generator (RNG) and chaos-based parallel encryption algorithm are developed. Using developed RNG, confusion and encryption of pixel in images have been realized. Also parallel computing has been used to increase security and speedup the encryption. With the new parallel encryption algorithm, the security and performance tests of the image encryption application and the encryption process have been made. In addition, the evaluated performance of the parallel computing is described in speedup and efficiency.


Image encryption Parallel algorithm Chaos RNG 


  1. 1.
    Davies, D.W: Some regular properties of the ‘data encryption standard’algorithm. In: Advances in Cryptology, pp. 89–96. Springer (1983)Google Scholar
  2. 2.
    Daemen, J., Rijmen, V.: The design of Rijndael: AES-the advanced encryption standard. Springer Science & Business Media (2013)Google Scholar
  3. 3.
    Daemen, J., Govaerts, R., Vandewalle, J.: Weak keys for idea. In: Annual International Cryptology Conference, pp. 224–231. Springer (1993)Google Scholar
  4. 4.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Zhaopin, S., Zhang, G., Jiang, J.: Multimedia security: a survey of chaos-based encryption technology. In: Multimedia-A Multidisciplinary Approach to Complex Issues, InTech (2012)Google Scholar
  6. 6.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Labs Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jakimoski, G., Kocarev, L.: Chaos and cryptography: block encryption ciphers based on chaotic maps. IEEE Trans. Circuits Syst. I 48(2), 163–169 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Amigo, J.M., Kocarev, L., Szczepanski, J.: Theory and practice of chaotic cryptography. Phys. Lett. A 366(3), 211–216 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Li, C., Liu, Y., Xie, T., Chen, M.Z.Q.: Breaking a novel image encryption scheme based on improved hyperchaotic sequences. Nonlinear Dyn. 73(3), 2083–2089 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wang, Y., Wong, K.-W., Liao, X., Chen, G.: A new chaos-based fast image encryption algorithm. Appl. Soft Comput. 11(1), 514–522 (2011)CrossRefGoogle Scholar
  12. 12.
    Hua, Z., Zhou, Y.: Image encryption using 2d logistic-adjusted-sine map. Inf. Sci. 339, 237–253 (2016)CrossRefGoogle Scholar
  13. 13.
    Bakhache, B., Ghazal, J.M., El Assad, S.: Improvement of the security of zigbee by a new chaotic algorithm. IEEE Syst. J. 8(4), 1024–1033 (2014)CrossRefGoogle Scholar
  14. 14.
    Çavuşoğlu, Ü., Zengin, A., Pehlivan, I., Kaçar, S.: A novel approach for strong s-box generation algorithm design based on chaotic scaled zhongtang system. Nonlinear Dyn. 87(2), 1081–1094 (2017)CrossRefzbMATHGoogle Scholar
  15. 15.
    Gao, T., Chen, Z.: Image encryption based on a new total shuffling algorithm. Chaos Solitons Fractals 38(1), 213–220 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tang, Y., Wang, Z., Fang, J.: Image encryption using chaotic coupled map lattices with time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2456–2468 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Usama, M., Khan, M.K., Alghathbar, K., Lee, C.: Chaos-based secure satellite imagery cryptosystem. Comput. Math. Appl. 60(2), 326–337 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Xie, E.Y., Li, C., Yu, S., Lü, J.: On the cryptanalysis of fridrich’s chaotic image encryption scheme. Signal Process. 132, 150–154 (2017)CrossRefGoogle Scholar
  19. 19.
    Li, C., Lin, D., Lü, J.: Cryptanalyzing an image-scrambling encryption algorithm of pixel bits. IEEE Multimed. 24(3), 64–71 (2017)CrossRefGoogle Scholar
  20. 20.
    Zhou, Q., Wong, K., Liao, X., Xiang, T., Yue, H.: Parallel image encryption algorithm based on discretized chaotic map. Chaos Solitons Fractals 38(4), 1081–1092 (2008)CrossRefGoogle Scholar
  21. 21.
    Mirzaei, O., Yaghoobi, M., Irani, H.: A new image encryption method: parallel sub-image encryption with hyper chaos. Nonlinear Dyn. 67(1), 557–566 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wang, Y., Han, C., Liu, Y.: A parallel encryption algorithm for color images based on lorenz chaotic sequences. In: Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on, 2, pp. 9744–9747. IEEE, (2006)Google Scholar
  23. 23.
    Liao, Xi, Lai, S., Zhou, Q.: A novel image encryption algorithm based on self-adaptive wave transmission. Signal Process. 90(9), 2714–2722 (2010)CrossRefzbMATHGoogle Scholar
  24. 24.
    Liang, H.Y., Gu, X.S.: A novel chaos optimization algorithm based on parallel computing. Huadong Ligong Daxue Xuebao (Ziran Kexue Ban) 30(4), 450–453 (2004)Google Scholar
  25. 25.
    Yuan, X., Zhao, J., Yang, Y., Wang, Y.: Hybrid parallel chaos optimization algorithm with harmony search algorithm. Appl. Soft Comput. 17, 12–22 (2014)CrossRefGoogle Scholar
  26. 26.
    Huang, R., Rhee, K.H., Uchida, S.: A parallel image encryption method based on compressive sensing. Multimed. Tools Appl. 72(1), 71–93 (2014)CrossRefGoogle Scholar
  27. 27.
    Rostami, M.J., Shahba, A., Saryazdi, S., Nezamabadi-pour, H.: A novel parallel image encryption with chaotic windows based on logistic map. Comput. Electr. Eng. 62, 384–400 (2017)CrossRefGoogle Scholar
  28. 28.
    Yuan, H.M., Liu, Y., Lin, T., Ting, H., Gong, L.H.: A new parallel image cryptosystem based on 5d hyper-chaotic system. Signal Process. 52, 87–96 (2017)Google Scholar
  29. 29.
    Guiqiang, H., Xiao, D., Wang, Y., Xiang, T.: An image coding scheme using parallel compressive sensing for simultaneous compression-encryption applications. J. Vis. Commun. Image Represent. 44, 116–127 (2017)CrossRefGoogle Scholar
  30. 30.
    Liu, J., Bai, T., Shen, X., Dou, S., Lin, C., Cai, J.: Parallel encryption for multi-channel images based on an optical joint transform correlator. Opt. Commun. 396, 174–184 (2017)CrossRefGoogle Scholar
  31. 31.
    Kaçar, S.: Analog circuit and microcontroller based rng application of a new easy realizable 4d chaotic system. Optik-Int. J. Light Electron Opt. 127(20), 9551–9561 (2016)CrossRefGoogle Scholar
  32. 32.
    Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, Booz-Allen and Hamilton Inc Mclean Va (2001)Google Scholar
  33. 33.
    Rauber, T., Rünger, G.: Parallel Programming: For multicore and Cluster Systems. Springer Science & Business Media, New York (2013)CrossRefzbMATHGoogle Scholar
  34. 34.
    Grama, A.: Introduction to Parallel Computing. Pearson Education, London (2003)Google Scholar
  35. 35.
    Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24(9), 926–934 (2006)CrossRefGoogle Scholar
  36. 36.
    Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In: Advances in Cryptology-CRYPTO, 90, pp. 2–21. Springer (1991)Google Scholar
  37. 37.
    Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3d chaotic cat maps. Chaos Solitons Fractals 21(3), 749–761 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Musa, M.A., Schaefer, E.F., Wedig, S.: A simplified aes algorithm and its linear and differential cryptanalyses. Cryptologia 27(2), 148–177 (2003)CrossRefzbMATHGoogle Scholar
  39. 39.
    Jolfaei, A., Mirghadri, A.: A new approach to measure quality of image encryption. Int. J. Comput. Netw. Secur. 2(8), 38–44 (2010)Google Scholar
  40. 40.
    Khan, M., Shah, T.: An efficient chaotic image encryption scheme. Neural Comput. Appl. 26(5), 1137–1148 (2015)CrossRefGoogle Scholar
  41. 41.
    Belazi, A., Khan, M., El-Latif, A.A.A., Belghith, S.: Efficient cryptosystem approaches: S-boxes and permutation–substitution-based encryption. Nonlinear Dyn. 87(1), 337–361 (2017)CrossRefGoogle Scholar
  42. 42.
    Khan, M.: A novel image encryption scheme based on multiple chaotic S-boxes. Nonlinear Dyn. 82(1–2), 527–533 (2015)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Hua, Z., Zhou, Y., Pun, C.M., Chen, C.L.P.: 2d sine logistic modulation map for image encryption. Inf. Sci. 297, 80–94 (2015)CrossRefGoogle Scholar
  44. 44.
    Wang, X., Liu, L., Zhang, Y.: A novel chaotic block image encryption algorithm based on dynamic random growth technique. Opt. Lasers Eng. 66, 10–18 (2015)CrossRefGoogle Scholar
  45. 45.
    Wang, X., Guo, K.: A new image alternate encryption algorithm based on chaotic map. Nonlinear Dyn. 76(4), 1943–1950 (2014)CrossRefzbMATHGoogle Scholar
  46. 46.
    Zhang, X., Mao, Y., Zhao, Z.: An efficient chaotic image encryption based on alternate circular s-boxes. Nonlinear Dyn. 78(1), 359–369 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer EngineeringSakarya UniversitySerdivanTurkey
  2. 2.Department of Electrical and Electronics EngineeringSakarya UniversitySerdivanTurkey

Personalised recommendations