Advertisement

A software-defined architecture for control of IoT cyberphysical systems

  • Ala’ Darabseh
  • Nikolaos M. Freris
Article
  • 70 Downloads

Abstract

Based on software-defined principles, we propose a holistic architecture for cyberphysical systems (CPS) and internet of things (IoT) applications, and highlight the merits pertaining to scalability, flexibility, robustness, interoperability, and cyber security. Our design especially capitalizes on the computational units possessed by smart agents, which may be utilized for decentralized control and in-network data processing. We characterize the data flow, communication flow, and control flow that assimilate a set of components such as sensors, actuators, controllers, and coordinators in a systemic programmable fashion. We specifically aim for distributed and decentralized decision-making by spreading the control over several hierarchical layers. In addition, we propose a middleware layer to encapsulate units and services for time-critical operations in highly dynamic environments. We further enlist a multitude of vulnerabilities to cyberattacks, and integrate software-defined solutions for enabling resilience, detection and recovery. In this purview, several controllers cooperate to identify and respond to security threats and abnormal situations in a self-adjusting manner. Last, we illustrate numerical simulations in support of the virtues of a software-defined design for CPS and IoT.

Keywords

Software defined systems (SDSys) Internet of things (IoT) Cyberphysical systems (CPS) Distributed systems Decentralized control Cyber security Middleware 

Notes

Acknowledgements

This work was supported in part by the Center for Cyber Security at New York University Abu Dhabi.

References

  1. 1.
    Al-Ayyoub, M., Jararweh, Y., Benkhelifa, E., Vouk, M., Rindos, A.: A novel framework for software defined based secure storage systems. Simul. Modell. Pract. Theory 77, 407–423 (2016)Google Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cardenas, A.A., Amin, S., Sastry, S.: Secure control: towards survivable cyber-physical systems. In: 28th IEEE International Conference on Distributed Computing Systems Workshops (ICDCS), pp. 495–500 (2008)Google Scholar
  4. 4.
    Darabseh, A., Al-Ayyoub, M., Jararweh, Y., Benkhelifa, E., Vouk, M., Rindos, A.: SDSecurity: A software defined security experimental framework. In: IEEE International Conference on Communication Workshop (ICCW), pp. 1871–1876 (2015)Google Scholar
  5. 5.
    Darabseh, A., Al-Ayyoub, M., Jararweh, Y., Benkhelifa, E., Vouk, M., Rindos, A.: SDStorage: A software defined storage experimental framework. In: IEEE International Conference on Cloud Engineering (IC2E), pp. 341–346 (2015)Google Scholar
  6. 6.
    Darabseh, A., Freris, N.: A software defined architecture for cyberphysical systems. In: 4th IEEE International Conference on Software Defined Systems (SDS), pp. 54–60 (2017)Google Scholar
  7. 7.
    Darabseh, A., Freris, N., Jararweh, Y., Al-Ayyoub, M.: SDCache: Software defined data caching control for cloud services. In: 4th IEEE International Conference on Future Internet of Things and Cloud (FiCloud) (2016)Google Scholar
  8. 8.
    De Oliveira, R., Shinoda, A., Schweitzer, C., Rodrigues Prete, L.: Using Mininet for emulation and prototyping software-defined networks. In: IEEE Colombian Conference on Communications and Computing (COLCOM), pp. 1–6 (2014)Google Scholar
  9. 9.
    Duan, X., Freris, N., Cheng, P.: Secure clock synchronization under collusion attacks. In: Proceedings of the 54th Allerton Conference on Communication, Control and Computing, pp. 1142–1148 (2016)Google Scholar
  10. 10.
    Fawzi, H., Tabuada, P., Diggavi, S.: Secure estimation and control for cyber-physical systems under adversarial attacks. IEEE Trans. Autom. Control 59(6), 1454–1467 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fontes, R.R., Afzal, S., Brito, S.H., Santos, M.A., Rothenberg, C.E.: Mininet-WiFi: Emulating software-defined wireless networks. In: 11th International Conference on Network and Service Management (CNSM), pp. 384–389 (2015)Google Scholar
  12. 12.
    Freris, N., Borkar, V., Kumar, P.R.: A model-based approach to clock synchronization. In: Proceedings of the 48th IEEE Conference on Decision and Control (CDC), pp. 5744–5749 (2009)Google Scholar
  13. 13.
    Freris, N., Graham, S., Kumar, P.R.: Fundamental limits on synchronizing clocks over networks. IEEE Trans. Autom. Control 56(6), 1352–1364 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Freris, N., Kowshik, H., Kumar, P.R.: Fundamentals of large sensor networks: connectivity, capacity, clocks, and computation. Proc. IEEE 98(11), 1828–1846 (2010)CrossRefGoogle Scholar
  15. 15.
    Freris, N., Öçal, O., Vetterli, M.: Compressed sensing of streaming data. In: Proceedings of the 51st Allerton Conference on Communication, Control and Computing, pp. 1242–1249 (2013)Google Scholar
  16. 16.
    Freris, N., Patrinos, P.: Distributed computing over encrypted data. In: Proceedings of the 54th Allerton Conference on Communication, Control and Computing, pp. 1116–1122 (2016)Google Scholar
  17. 17.
    Freris, N., Zouzias, A.: Fast distributed smoothing of relative measurements. In: 51st IEEE Conference on Decision and Control (CDC), pp. 1411–1416 (2012)Google Scholar
  18. 18.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  19. 19.
    Gungor, V.C., Hancke, G.P.: Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Trans. Ind. Electron. 56(10), 4258–4265 (2009)CrossRefGoogle Scholar
  20. 20.
    Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theory 46(2), 388–404 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hou, I.H., Borkar, V., Kumar, P.R.: A theory of QoS for wireless. In: IEEE INFOCOM, pp. 486–494 (2009)Google Scholar
  22. 22.
    Jain, R., Paul, S.: Network virtualization and software defined networking for cloud computing: a survey. IEEE Commun. Mag. 51(11), 24–31 (2013)CrossRefGoogle Scholar
  23. 23.
    Jararweh, Y., Al-Ayyoub, M., Darabseh, A., Benkhelifa, E., Rindos, A.: Software defined cloud: survey, system and evaluation. Future Gener. Comput. Syst. 58, 56–74 (2016)CrossRefGoogle Scholar
  24. 24.
    Jararweh, Y., Al-Ayyoub, M., Darabseh, A., Benkhelifa, E., Vouk, M., Rindos, A.: SDIoT: a software defined based internet of things framework. J. Ambient Intell. Hum. Comput. 6(4), 453–461 (2015)CrossRefGoogle Scholar
  25. 25.
    Kim, K.D., Kumar, P.R.: Architecture and mechanism design for real-time and fault-tolerant etherware for networked control. In: Proceeding of the 17th IFAC World Congress, pp. 9421–9426 (2008)Google Scholar
  26. 26.
    Kim, K.D., Kumar, P.R.: Cyber-physical systems: a perspective at the centennial. Proc. IEEE 100(Special Centennial Issue), 1287–1308 (2012)CrossRefGoogle Scholar
  27. 27.
    Kim, K.D., Kumar, P.R.: Real-time middleware for networked control systems and application to an unstable system. IEEE Trans. Control Syst. Technol. 21(5), 1898–1906 (2013)CrossRefGoogle Scholar
  28. 28.
    Lee, E.A.: Cyber physical systems: design challenges. In: 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), pp. 363–369 (2008)Google Scholar
  29. 29.
    Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A Cyber-Physical Systems Approach. MIT Press, Cambridge (2011)zbMATHGoogle Scholar
  30. 30.
    Mitola, J.: Cognitive radio—an integrated agent architecture for software defined radio. Ph.D. thesis, Royal Institute of Technology (KTH) (2000)Google Scholar
  31. 31.
    Rajkumar, R.R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing revolution. In: Proceedings of the 47th Design Automation Conference, pp. 731–736 (2010)Google Scholar
  32. 32.
    Satchidanandan, B., Kumar, P.R.: Dynamic watermarking: active defense of networked cyber-physical systems. Proc. IEEE 105(2), 219–240 (2017)CrossRefGoogle Scholar
  33. 33.
    Sopasakis, P., Freris, N., Patrinos, P.: Accelerated reconstruction of a compressively sampled data stream. In: 24th European Signal Processing Conference (EUSIPCO) (2016)Google Scholar
  34. 34.
    Srikant, R., Ying, L.: Communication Networks: An Optimization, Control, and Stochastic Networks Perspective. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
  35. 35.
    Vlachos, M., Freris, N., Kyrillidis, A.: Compressive mining: fast and optimal data mining in the compressed domain. VLDB J. 24(1), 1–24 (2014)CrossRefGoogle Scholar
  36. 36.
    Wette, P., Draxler, M., Schwabe, A., Wallaschek, F., Zahraee, M., Karl, H.: Maxinet: distributed emulation of software-defined networks. In: IFIP Networking Conference, pp. 1–9 (2014)Google Scholar
  37. 37.
    Yampolskiy, M., Horvath, P., Koutsoukos, X.D., Xue, Y., Sztipanovits, J.: Taxonomy for description of cross-domain attacks on CPS. In: Proceedings of the 2nd ACM International Conference on high confidence networked systems, pp. 135–142 (2013)Google Scholar
  38. 38.
    Zoumpoulis, S., Vlachos, M., Freris, N., Lucchese, C.: Right-protected data publishing with provable distance-based mining. IEEE Trans. Knowl. Data Eng. 26(8), 2014–2028 (2014)CrossRefGoogle Scholar
  39. 39.
    Zouzias, A., Freris, N.: Randomized extended Kaczmarz for solving least squares. SIAM J. Matrix Anal. Appl. 34(2), 773–793 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Zouzias, A., Freris, N.: Randomized gossip algorithms for solving Laplacian systems. In: Proceedings of the 14th European Control Conference (ECC), pp. 1920–1925 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.New York University Abu DhabiAbu DhabiUAE
  2. 2.University of Science and Technology of ChinaHefeiChina

Personalised recommendations