Cluster Computing

, Volume 22, Supplement 4, pp 9837–9845 | Cite as

Energy efficiency analysis of differential cooperative algorithm in wireless sensor network

  • M. KanthimathiEmail author
  • R. Amutha
  • K. Senthil Kumar


Cooperative MIMO techniques deliver the speed and reliability required for future fifth generation mobile networks. However, coherent MIMO techniques demand high channel estimation complexity as well as high pilot overhead. Hence collaboration of cooperative communication and non-coherent schemes will be particularly beneficial in energy constrained wireless sensor networks (WSNs). Aiming at minimizing the energy consumption per bit, we propose an algorithm for differential cooperative communication in WSNs using unitary space time modulation technique. The algorithm computes the optimum transmission distance for the optimum number of cooperating nodes. The simulation results show that the proposed algorithm provides significant energy saving and increased network lifetime compared with the fixed distance cooperative schemes.


Differential cooperation Fast fading channel Space-time modulation Wireless sensor network 


  1. 1.
    Marzetta, T.L., Hochwald, B.M.: Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading. IEEE Trans. Inf. Theory 45, 139–157 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Hochwald, B.M., Sweldens, W.: Differential unitary space-time modulation. IEEE Trans. Commun. 48(12), 2041–2052 (2000)CrossRefGoogle Scholar
  3. 3.
    Nguyen, A.V.K.: Performance analysis of differential space time modulation. IEEE Trans. Commun. 58(5), 2620–2632 (2012)zbMATHGoogle Scholar
  4. 4.
    Zhao, K., Pan, K., Zhang, B.: Cooperative Transmission in Mobile Wireless Sensor Networks with Multiple Carrier Frequency Offsets: A Double-Differential Approach, pp. 1–13. Hindawi Publishing Corporation, Cairo (2014)zbMATHGoogle Scholar
  5. 5.
    Hanzo, L., El-Hajjar, M., Alamri, O.: Near-capacitywirelesstransceivers and cooperative communications in the MIMO era: evolution of standards, waveform design, and future perspectives. Proc. IEEE 99(8), 1343–1385 (2011)CrossRefGoogle Scholar
  6. 6.
    Hanzo, L., Akhtman, J., Wang, L., Jiang, M.: MIMO-OFDM for LTE, WiFi and WiMax: Coherent Versus Non-coherent and Cooperative Turbo-Transceivers. Wiley/IEEE Press, New York (2010)CrossRefGoogle Scholar
  7. 7.
    Nguyen, D.N., Krunz, M.: A cooperative MIMO framework for wireless sensor networks. ACM Trans. Sens. Netw. 10(3), 1–30 (2014)CrossRefGoogle Scholar
  8. 8.
    Liu, L., Wang, Z., Zhou, M.C.: Cooperative multipath routing and relay based on non-coherent detection in wireless sensor networks. In: IEEE Conference on Automation Science and Engineering, pp. 128–132 (2008)Google Scholar
  9. 9.
    Lei, A., Schober, R.: Multiple-symbol differential decision fusion for mobile sensor network. IEEE Trans. Wirel. Commun. 9(2), 778–790 (2004)CrossRefGoogle Scholar
  10. 10.
    Cui, S., Goldsmith, A.J., Bahai, A.: Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE J. Sel. Areas Commun. 22(6), 1089–1098 (2004)CrossRefGoogle Scholar
  11. 11.
    Chung, J.M., Kim, J., Han, D.: Multihop hybrid virtual MIMO scheme for wireless sensor networks. IEEE Trans. Veh. Technol. 61(9), 4069–4078 (2012)CrossRefGoogle Scholar
  12. 12.
    Zhang, D., Chen, Z.: Energy efficiency of cooperative communication with guaranteed E2E reliability in WSNs. Int. J. Distrib. Sens. Netw. 31(12), 750–761 (2013)Google Scholar
  13. 13.
    Yetgin, H., Cheung, K.T., El-Hajjar, M., Hanzo, L.: Cross-layer network lifetime optimization considering transmit and signal processing power in wireless sensor networks. IET Wirel. Sens. Syst. 4(4), 176–182 (2014)CrossRefGoogle Scholar
  14. 14.
    Hou, J., Lee, M.H.: QPSK differential space time coding on different unitary matrices sets and initialization. Int. J. Commun. Syst. 19, 993–1007 (2006)CrossRefGoogle Scholar
  15. 15.
    Nguyen, T.D., Berder, O., Sentieys, O.: Cooperative MIMO schemes optimal selection for wireless sensor networks. In: IEEE Vehicular Technology Conference, pp. 85–89 (2007)Google Scholar
  16. 16.
    Jie, D., Dan, P.L., Hua-ri, W.: Energy efficiency of virtual MIMO transmission schemes for cluster-based wireless sensor networks. J. China Univ. Posts Telecommun. 18(4), 31–38 (2011)CrossRefGoogle Scholar
  17. 17.
    Faouk, F., Rizki, R., Zaki, F.W.: Multi-level stable and energy-efficient clustering protocol in heterogeneous wireless sensor networks. IET Wirel. Sens. Syst. 4(4), 159–169 (2014)CrossRefGoogle Scholar
  18. 18.
    Schurgers, C., Aberthorne, O., Srivastava, M.: Modulation scaling for energy aware communication systems. In: Proc. Int. Symp. Low Power Electronics and Design, pp. 96–99 (2001)Google Scholar
  19. 19.
    Himsoon, T., Siriwongpairat, W.P., Han, Z., Liu, K.R.: Lifetime maximization via cooperative nodes and relay deployment in wireless networks. IEEE J. Sel. Areas commun. 25(2), 306–317 (2007)CrossRefGoogle Scholar
  20. 20.
    Senthil Kumar, K., Amutha, R.: An algorithm for energy efficient cooperative communication in wireless sensor networks. KSII Trans. Internet Inf. Syst. 10(7), 3080–3099 (2016)Google Scholar
  21. 21.
    Selvi, M., Velvizhy, P., Ganapathy, S., et al.: A rule based delay constrained energy efficient routing technique for wireless sensor networks. Clust. Comput. (2017)
  22. 22.
    Zhang, J., Fei, F., Gao, Q., Xiao-Hong, P.: Energy-efficient multihopcooperative MISO transmission with optimal hop distance in wireless ad hoc networks. IEEE Trans. Wirel. Commun. 10(10), 3426–3435 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ECE DepartmentSri Sai Ram Engineering CollegeWest Tambaram, ChennaiIndia
  2. 2.Department of ECESSN College of EngineeringKalavakkam, ChennaiIndia
  3. 3.Department of ECERajalakshmi Engineering CollegeThandalam, ChennaiIndia

Personalised recommendations