Advertisement

Cluster Computing

, Volume 22, Supplement 5, pp 12567–12580 | Cite as

Nxt-Max: for supporting VDC-based maximum redundant bandwidth allocation in cloud datacenter

  • Wang ShuoEmail author
  • Li Jing
  • Wang Qiqi
  • Zhang Hongjie
Article

Abstract

In cloud datacenter, work-conserving bandwidth offering benefits the network sharing of multiple virtual datacenters (VDCs). The lack of concrete network resources prevents tenants from predicting lower bounds on the performance of their applications. Prior works concentrate on efficient and scalable bandwidth allocation algorithms for VDCs. However, per-VDC redundant bandwidth is ignored, which is crucial to work-conserving bandwidth offering. In this paper, Nxt-Max, a VDC-based redundant bandwidth allocation framework is designed that ensures per-VDC maximum redundant bandwidth allocation by integrating online allocation with offline allocation. To make online bandwidth allocation efficient, a heuristic online parallel bandwidth allocation algorithm is proposed by dividing the whole allocation spaces into independent pods. Coupled with smart offline adjustment, the released network graph, and greedily migrate VDCs with the least redundant bandwidth are constructed, advancing the overall underlying network utilization. Simulations demonstrate that VDC allocation achieves high network utilization, low time complexity, and per-VDC maximum bandwidth allocation.

Keywords

Cloud datacenter Cloud networks Per-VDC redundant bandwidth Bandwidth allocation 

Notes

Acknowledgements

The study was supported by “The key science research project of Anhui province, the design and research of large-scale data stream processing and storage system in cloud environment (Grant No.KJ2014A150)”.

References

  1. 1.
    Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. In: Proceedings of ACM SIGCOMM, vol. 3 no. 8, pp. 89–92 (2008)Google Scholar
  2. 2.
    Guo, C., et al.: BCube: a high performance, server-centric network architecture for modular data centers. ACM SIGCOMM Comput. Commun. Rev. 39(4), 63–74 (2009)CrossRefGoogle Scholar
  3. 3.
    Guo, C., et al.: Dcell: a scalable and fault-tolerant network structure for data centers. ACM SIGCOMM Comput. Commun. Rev. 38(4), 75–86 (2008)CrossRefGoogle Scholar
  4. 4.
    Greenberg, A., et al.: VL2: a scalable and flexible data center network. ACM SIGCOMM Comput. Commun. Rev. 39(4), 9–14 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Greenberg, A., et al.: Towards a next generation data center architecture: scalability and commoditization. In: Proceedings of the ACM workshop on Programmable routers for extensible services of tomorrow. ACM vol. 1, no. 8, pp. 78–82 (2008)Google Scholar
  6. 6.
    Popa, L., et al.: FairCloud: sharing the network in cloud computing. In: Proceedings of the ACM SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols for computer communication. vol. 4, no. 7, pp. 11–15 (2012)Google Scholar
  7. 7.
    Shieh, A., et al.: Seawall: performance isolation for cloud datacenter networks. In: Proceedings of the 2nd USENIX conference on Hot topics in cloud computing. USENIX Association. vol. 7, no. 4, pp. 51-55 (2010)Google Scholar
  8. 8.
    Guo, C., et al. Secondnet: a data center network virtualization architecture with bandwidth guarantees. In: Proceedings of the 6th International COnference. ACM; vol. 9, no. 4, pp. 491–496, (2010)Google Scholar
  9. 9.
    Ballani, H., et al.: Towards predictable datacenter networks. ACM SIGCOMM Comput. Commun. Rev. 41(4), 45–50 (2011)CrossRefGoogle Scholar
  10. 10.
    Clos, C.: A study of non-blocking switching networks. Bell Syst. Tech. J. 32(2), 406–424 (1953)CrossRefGoogle Scholar
  11. 11.
    Xie, D., et al.: The only constant is change: incorporating time-varying network reservations in data centers. ACM SIGCOMM Comput. Commun. Rev. 42(4), 199–210 (2012)CrossRefGoogle Scholar
  12. 12.
    Lee, J., et al.: Application-driven bandwidth guarantees in datacenters. In: Proceedings of the 2014 ACM conference on SIGCOMM. ACM 3(2), 41–45 (2014)Google Scholar
  13. 13.
    McKeown, N., et al.: OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)CrossRefGoogle Scholar
  14. 14.
    Lam, T., et al.: NetShare: virtualizing data center networks across services. Department of Computer Science and Engineering, vol. 2, no. 8, pp. 451–455. University of California, San Diego (2010)Google Scholar
  15. 15.
    Niranjan Mysore, Radhika, et al.: Portland: a scalable fault-tolerant layer 2 data center network fabric. ACM SIGCOMM Comput. Commun. Rev. 39(4), 20–25 (2009)CrossRefGoogle Scholar
  16. 16.
    Hu, T.C.: Multi-commodity network flows. Oper. Res. 11(3), 344–360 (1963)CrossRefzbMATHGoogle Scholar
  17. 17.
    Baier, G., Kohler, E., Skutella, M.: The k-splittable flow problem. Algorithmica 42(4), 231–248 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gamst, M., et al.: Two-and three-index formulations of the minimum cost multicommodity k-splittable flow problem. Eur. J. Oper. Res. 202(1), 82–89 (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Shamsi, J., Khojaye, M.A., Qasmi, M.A.: Data-intensive cloud computing: requirements, expectations, challenges, and solutions. J Grid Comput. 11(2), 281–310 (2013)CrossRefGoogle Scholar
  20. 20.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  21. 21.
    Hopps, C.E.: Analysis of an equal-cost multi-path algorithm. ACM 56(8), 23–30 (2000)Google Scholar
  22. 22.
    Al-Fares, M., et al.: Hedera: dynamic flow scheduling for data center networks. NSDI 10(8), 89–92 (2010)Google Scholar
  23. 23.
    Soliman, M., et al.: Exploring source routed forwarding in SDN-based WANs. Communications (ICC), 2014 IEEE International Conference on. IEEE, 2014Google Scholar
  24. 24.
    Whittaker, R.H.: Evolution and measurement of species diversity. Taxon 21(8), 213–251 (1972)CrossRefGoogle Scholar
  25. 25.
    Rodrigues, H., et al.: Gatekeeper: supporting bandwidth guarantees for multi-tenant datacenter networks. WIOV 1(3), 784–789 (2011)Google Scholar
  26. 26.
    Semeria, C., Marketing Engineer: Multiprotocol label switching. Enhanc. Routing New Public Netw. White Paper Juniper Netw. 79(3), 14–19 (2000)Google Scholar
  27. 27.
    Popa, L., et al. ElasticSwitch: practical work-conserving bandwidth guarantees for cloud computing. In: Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM. ACM, 2(8):78–82 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of Computer Science and TechnologyBengbu UniversityBengbuChina

Personalised recommendations