Cluster Computing

, Volume 22, Supplement 1, pp 1373–1383 | Cite as

Minimizing movement for network connectivity in mobile sensor networks: an adaptive approach

  • Arvind Madhukar JagtapEmail author
  • N. Gomathi


Nowadays the most important key point in the design of wireless sensor networks (WSNs) is the sensor coverage point and network connectivity. The main practical issue in designing the essential WSN is the mobility of mobile sensors which consumes more power thereby reduces the network lifetime significantly. In order to avoid these problems, we have investigated the mobile sensor deployment (MSD) problem comprises of network connectivity and target coverage is resolved using Euclidean spanning tree model (ECST) and ECST-adaptive VABC (ECST-AVABC) method respectively. Besides, we proposed an AVABC optimization algorithm by obtaining minimum movement of mobile sensors over the network. Furthermore, the extensive simulation experiments have offered the optimal promising solutions of NCON, to the MSD problem with minimum movement and providing the extended lifetime of WSN. Finally, the experimental results states that the movement distance shown by the proposed ECST-AVABC become 4.2, 10, and 20% lesser than the standard ECST-VABC method.


Wireless sensor networks Target coverage Network connectivity Connecting nodes Coverage sensor nodes Sink Energy consumption 


  1. 1.
    Blumrosen, G., Hod, B., Anker, T., Dolev, D., Rubinsky, B.: Enhancing rssi-based tracking accuracy in wireless sensor networks. ACM Trans. Sens. Netw. 9(3), 1–29 (2013)CrossRefGoogle Scholar
  2. 2.
    Huang, R., Song, W.-Z., Xu, M., Peterson, N., Shirazi, B., LaHusen, R.: Real-world sensor network for long-term volcano monitoring: design and findings. IEEE Trans. Parallel Distrib. Syst. 23(2), 321–329 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Zhou, Wu, M.-Y., Shu, W.: Finding optimal placements for mobile sensors: wireless sensor network topology adjustment. In: Proc. IEEE 6th Circuits Syst. Symp. Emerging Technol.: Frontiers Mobile Wireless Commun., vol. 2, pp. 529–532 (2004)Google Scholar
  4. 4.
    Agarwal, A., Agarwal, K.: The next generation mobile wireless cellular networks–4G and beyond. Am. J. Elect. Electron. Eng. 2(3), 92–97 (2014)CrossRefGoogle Scholar
  5. 5.
    Agarwal, A., Misra, G., Agarwal, K.: The 5th generation mobile wireless networks–key concepts, network architecture and challenges. Am. J. Elect. Electron. Eng. 3(2), 22–28 (2015)Google Scholar
  6. 6.
    Liu, X.-Y., Wu, K.-L., Zhu, Y., Kong, L., Wu, M.-Y.: Mobility increases the surface coverage of distributed sensor networks. Comput. Netw. 57(11), 2348–2363 (2013)CrossRefGoogle Scholar
  7. 7.
    Luo, J., Wang, D., Zhang, Q.: Double mobility: coverage of the sea surface with mobile sensor networks. ACM SIGMOBILE Mobile Comput. Commun. Rev. 13(1), 52–55 (2009)CrossRefGoogle Scholar
  8. 8.
    Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: Mobile element scheduling with dynamic deadlines. IEEE Trans. Mobile Comput. 6(4), 395–410 (2007)CrossRefGoogle Scholar
  9. 9.
    Chin, T.L., Ramanathan, P., Saluja, K.K., Wang, K.C.: Exposure for collaborative detection using mobile sensor networks. In: Proc. IEEE 2rd Int. Conf. Mobile Adhoc Sen. Syst., pp. 743–750 (2005)Google Scholar
  10. 10.
    Bisnik, N., Abouzeid, A.A., Isler, V.: Stochastic event capture using mobile sensors subject to a quality metric. IEEE Trans. Robot. 23(4), 676–692 (2007)CrossRefGoogle Scholar
  11. 11.
    Liu, B., Dousse, O., Nain, P., Towsley, D.: Dynamic coverage of mobile sensor networks. IEEE Trans. Parallel Distrib. Syst. 24(2), 301–311 (2013)CrossRefGoogle Scholar
  12. 12.
    Wang, G., Bhuiyan, M.Z.A., Cao, J., Wu, J.: Detecting movements of a target using face tracking in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 25(4), 939–949 (2014)CrossRefGoogle Scholar
  13. 13.
    He, L., Pan, J., Xu, J.: A progressive approach to reducing data collection latency in wireless sensor networks with mobile elements. IEEE Trans. Mobile Comput. 12(7), 1308–1320 (2013)CrossRefGoogle Scholar
  14. 14.
    Tan, R., Xing, G., Wang, J., So, H.C.: Exploiting reactive mobility for collaborative target detection in wireless sensor networks. IEEE Trans. Mobile Comput. 9(3), 317–332 (2010)CrossRefGoogle Scholar
  15. 15.
    Fu, Z., You, K.: Optimal mobile sensor scheduling for a guaranteed coverage ratio in hybrid wireless sensor networks. Int. J. Distrib. Sens. Netw. 9, 1–11 (2013)Google Scholar
  16. 16.
    He, S., Chen, J., Li, X., Shen, X., Sun, Y.: Cost-effective barrier coverage by mobile sensor networks. In: Proc. IEEE 31st Annu. Int. Conf. Comput. Commun., pp. 819–827 (2012)Google Scholar
  17. 17.
    Wang, G., Irwin, M.J., Berman, P., Fu, H., Porta, T.L.: Optimizing sensor movement planning for energy efficiency. In: Proc. Int. Symp. Low Power Electron. Des., pp. 215–220 (2005)Google Scholar
  18. 18.
    Mahboubi, H., Moezzi, K., Aghdam, A.G., Sayrafian-Pour, K.: Self-deployment algorithms for field coverage in a network of nonidentical mobile sensors. In: Proc. IEEE Int. Conf. Commun., pp. 1–6 (2011)Google Scholar
  19. 19.
    Mahboubi, H., Moezzi, K., Aghdam, A.G., Pour, K.S.: Distributed deployment algorithms for efficient coverage in a network of mobile sensors with nonidentical sensing capabilities. IEEE Trans. Veh. Technol. (2014).
  20. 20.
    Yang, Y., Fonoage, M.I., Cardei, M.: Improving network lifetime with mobile wireless sensor networks. Comput. Commun. 33(4), 409–419 (2010)CrossRefGoogle Scholar
  21. 21.
    Luo, W., Wang, J., Guo, J., Chen, J.: Parameterized complexity of max-lifetime target coverage in wireless sensor networks. Theor. Comput. Sci. 518, 32–41 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, Y.-C., Tseng, Y.-C.: Distributed deployment schemes for mobile wireless sensor networks to ensure multilevel coverage. IEEE Trans. Parallel Distrib. Syst. 19(9), 1280–1294 (2008)CrossRefGoogle Scholar
  23. 23.
    Wang, J., Luo, W., Feng, Q., Guo, J.: Parameterized complexity of min-power multicast problems in wireless ad hoc networks. Theor. Comput. Sci. 508, 16–25 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mathews, E., Mathew, C.: Deployment of mobile routers ensuring coverage and connectivity. Int. J. Comput. Netw. Commun. 4(1), 175–191 (2012)CrossRefGoogle Scholar
  25. 25.
    Korbi, I.E., Zeadally, S.: Energy-aware sensor node relocation in mobile sensor networks. Ad Hoc Netw. 16(1), 247–265 (2014)CrossRefGoogle Scholar
  26. 26.
    Jagtap, A., Kumar, R.: A hybrid approach using Voronoi partition and swarm intelligence. Commun. JGoogle Scholar
  27. 27.
    Lu, M., Wu, J., Cardei, M., Li, M.: Energy-efficient connected coverage of discrete targets in wireless sensor networks. In: Proc. of 3rd Int. Conf. Netw. and Mobile Comput., pp. 43–52 (2005)Google Scholar
  28. 28.
    Luo, R.C., Chen, O.: Mobile sensor node deployment and asynchronous power management for wireless sensor networks. IEEE Trans. Ind. Electron. 59(5), 2377–2385 (2012)CrossRefGoogle Scholar
  29. 29.
    Bai, X., Kumar, S., Xuan, D., Yun, Z., Lai, T.H.: Deploying wireless sensors to achieve both coverage and connectivity. In: Proc. 7th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., pp. 131–142 (2006)Google Scholar
  30. 30.
    van de Vel, M.: Theory of Convex Structures, vol. 50. North Holland, Amsterdam (1993)zbMATHGoogle Scholar
  31. 31.
    Karp, R.M.: Reducibility Among Combinatorial Problems. Springer, New York (1972)CrossRefzbMATHGoogle Scholar
  32. 32.
    Lawler, H.E.L.: The quadratic assignment problem. Manage. Sci. 9(4), 586–599 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Liao, Y.Z., Zhang, S., Cao, J., Wang, W., Wang, J.: Minimizing movement for target coverage in mobile sensor networks. In: Proc. 32nd Int. Conf. Distrib. Comput. Syst., pp. 194–200 (2012)Google Scholar
  34. 34.
    Kuhn, Y.H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1/2), 83–97 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Cole, Y.R.: Parallel merge sort. SIAM J. Comput. 17(4), 770–785 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Liao, H.Z., Wang, J., Zhang, S., Cao, J.: Clique partition based relay placement in wimax mesh networks. In: Proc. IEEE Global Commun. Conf., pp. 2566–2571 (2012)Google Scholar
  37. 37.
    de Berg, H.M., van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  38. 38.
    Shamos, M.I.: Geometric complexity. In: Proc. 7th Annu. ACM Symp. Theory Comput., pp. 224–233 (1975)Google Scholar
  39. 39.
    Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 36–39. Springer, New York (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.VEL-TECH Dr. RR & Dr.SR Technical UniversityChennaiIndia

Personalised recommendations