Cluster Computing

, Volume 22, Supplement 5, pp 12219–12225 | Cite as

A novel method to detect bleeding frame and region in wireless capsule endoscopy video

  • P. SivakumarEmail author
  • B. Muthu Kumar


To detect the region and bleeding frame in the wireless capsule endoscopy video, an automatic computer-aided technique is highly demanded to reduce the burden of physicians. The wireless capsule endoscopy (WCE), is an imaging technology which is recently established and doesn’t require any wired device. This device detects abnormalities in GI tract, i.e. (colon, esophagus, small intestine, and stomach). A WCE video consists of 57,000 images. It is very hard to examine by clinicians. To determine bleeding photos out of fifty-seven thousand WCE images makes the task very hard and expensive. The main goal is to develop an automatic obscure bleeding detection method by using superpixel segmentation and naive Bayes classifier. Naive Bayes and superpixel segmentation are used for this problem.


Image color analysis Hemorrhaging Histograms Feature extraction Naïve Bayes classifier Visualization Accuracy Cloud computing 


  1. 1.
    Fu, Y., Zhang, W., Mandal, M., Meng, M.Q.: Computer-aided bleeding detection in WCE video. IEEE J. Biomed. Health Inform. 18(2), 636–42 (2014)CrossRefGoogle Scholar
  2. 2.
    Pan, G., Yan, G., Qiu, X., Cui, J.: Bleeding detection in wireless capsule endoscopy based on probabilistic neural network. J. Med. Syst. 35(6), 1477–1484 (2011)CrossRefGoogle Scholar
  3. 3.
    Al-Rahayfeh, A.A., Abuzneid, A.A.: Detection of bleeding in wireless capsule endoscopy images using range ratio color. Int. J. Multimed. Appl. 2(2), 1–10 (2010)Google Scholar
  4. 4.
    Hachama, M., Desolneux, A., Richard, F.J.: Bayesian technique for image classifying registration. IEEE Trans. Image Process. 21(9), 4080–4091 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Amin, M.M., Kermani, S., Talebi, A., Oghli, M.G.: Recognition of acute lymphoblastic leukemia cells in microscopic images using K-means clustering and support vector machine classifier. J. Med. Signals Sens. 5(1), 49–58 (2015)CrossRefGoogle Scholar
  6. 6.
    Dilna, C., Gopi, V.P.: A novel method for bleeding detection in Wireless Capsule Endoscopic images. In: IEEE International Conference on Computing and Network Communications (CoCoNet), (2015).
  7. 7.
    Maghsoudi, O.H., Alizadeh, M., Mirmomen, M.A.: A computer-aided method to detect bleeding, tumor, and disease regions in Wireless Capsule Endoscopy. In: IEEE Conference on Signal Processing in Medicine and Biology Symposium (SPMB), (2016).
  8. 9.
    Yuan, Y., Li, B., Meng, M.Q.: Bleeding frame and region detection in the wireless capsule endoscopy video. IEEE J. Biomed. Health Inform. 20(2), 624–630 (2016)CrossRefGoogle Scholar
  9. 10.
    Suman, S., Malik, A.S., Riegler, M., Ho, S.H., Hilmi, I., Goh, K.L.: Detection and classification of bleeding region in WCE images using color feature. In: Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing, Article No. 17 (2017)Google Scholar
  10. 11.
    Adam, N., Tachecí, I., Sulík, L., Bureš, J., Krejcar, O.: Automatic blood detection in capsule endoscopy video. J. Biomed. Opt. 21(12), 126007 (2016)CrossRefGoogle Scholar
  11. 12.
    Pan, G.B., Yan, G.Z., Song, X.S., Qiu, X.L.: Bleeding detection from wireless capsule endoscopy images using improved Euler distance in CIELab. J. Shanghai Jiaotong Univ. (Science) 15(2), 218–223 (2010)CrossRefGoogle Scholar
  12. 13.
    Unnimadhavan, R.: Automated bleeding detection in wireless capsule endoscopy videos. J. Biomed. 5(8), 218–224 (2017)Google Scholar
  13. 14.
    Maghsoudi, O.H., Talebpour, A., Soltanian-Zadeh, H., Alizadeh, M., Soleimani, H.A.: Informative and uninformative regions detection in WCE frames. J. Adv. Comput. 3(1), 12–34 (2014)Google Scholar
  14. 15.
    Priya, K., Archana, K.S., Neduncheliyanm, S.: Bleeding detection through wireless capsule endoscopy (WCE). Int. J. Adv. Comput. Technol. (IJACT) 4(1), 5–13 (2015)Google Scholar
  15. 16.
    Hwang, S., Celebi, M.E.: Polyp detection in wireless capsule endoscopy videos based on image segmentation and geometric feature. In: IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), (2010)Google Scholar
  16. 17.
    Murthi, A., Suganya, D.: Automatic bleeding frame and region detection for GLCM using artificial neural network. J. Adv. Chem. 12(24), 5613–5620 (2016)Google Scholar
  17. 18.
    Ashok, V., Murugesan, G.: Detection of retinal area from scanning laser ophthalmoscope images (SLO) using deep neural network. Int. J. Biomed. Eng. Technol. 23(2–4), 303–314 (2017)CrossRefGoogle Scholar
  18. 19.
    Coimbra, M., Mackiewicz, M., Fisher, M., Jamieson, C., Soares, J., Silva Cunha, J.P.: Computer vision tools for capsule endoscopy exam analysis. Eurasip NewsLetter 18(1), 1–19 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringGRT Institute of Engineering and TechnologyTiruttaniIndia
  2. 2.Department of Computer Science EngineeringSyed Ammal Engineering CollegeRamanathapuramIndia

Personalised recommendations