Advertisement

Analytically derived fuzzy membership functions

  • Weiping Zhang
  • Mohit Kumar
  • Yunfeng Zhou
  • Jingzhi Yang
  • Yihua Mao
Article

Abstract

The numerical algorithms typically used for determining the fuzzy membership functions are iterative, might face convergence issues, and lack in the mathematical theory. This study suggests an analytical approach to the determination of fuzzy membership functions via variational optimization. The uncertain parameters of a membership function are modeled by variational-membership-functions. The optimal expressions for variational-membership-functions are derived via maximizing analytically the log-membership of the data samples. The uncertain parameters are then averaged to obtain the optimal membership function. Several different scenarios of the uncertain variables are built up and the membership function is designed in each scenario analytically. Experiments have been made to demonstrate the consistently better performance of the proposed methodology than the typical numerical algorithms used for designing fuzzy systems. The application potential of the methodology is demonstrated by studying the problem of image matching and imaging based personal identification. This study and more studies in this direction will pave the way for the fuzzy researchers to reduce their dependance on numerical algorithms by designing the fuzzy systems in a more analytical manner.

Keywords

Fuzzy membership functions Variational optimization Uncertainties Modeling 

References

  1. 1.
    Alcala, R., Ducange, P., Herrera, F., Lazzerini, B., Marcelloni, F.: A multiobjective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy-rule-based systems. IEEE Trans. Fuzzy Syst. 17(5), 1106–1122 (2009)CrossRefGoogle Scholar
  2. 2.
    Aliasghary, M., Arghavani, N.: \(H^{\infty }\) estimation for optimization of rational-powered membership functions. In: 2012 IEEE 13th International Symposium on Computational Intelligence and Informatics (CINTI), pp. 251–256 (2012)Google Scholar
  3. 3.
    Antonelli, M., Ducange, P., Marcelloni, F.: Genetic training instance selection in multiobjective evolutionary fuzzy systems: a coevolutionary approach. IEEE Trans. Fuzzy Syst. 20(2), 276–290 (2012)CrossRefGoogle Scholar
  4. 4.
    Au, W.H., Chan, K., Wong, A.K.: A fuzzy approach to partitioning continuous attributes for classification. IEEE Trans. Knowl. Data Eng. 18(5), 715–719 (2006)CrossRefGoogle Scholar
  5. 5.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: speeded up robust features. Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  6. 6.
    Beal, M.J.: Variational algorithms for approximate bayesian inference. Ph.D. thesis, Gatsby Computational Neuroscience Unit, University College London (2003). http://www.cse.buffalo.edu/faculty/mbeal/thesis/index.html
  7. 7.
    Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York Inc, Secaucus (2006)zbMATHGoogle Scholar
  8. 8.
    Celikyilmaz, A., Turksen, I.: Enhanced fuzzy system models with improved fuzzy clustering algorithm. IEEE Trans. Fuzzy Syst. 16(3), 779–794 (2008)CrossRefGoogle Scholar
  9. 9.
    Cetisli, B.: Development of an adaptive neuro-fuzzy classifier using linguistic hedges: part 1. Expert Syst. Appl. 37(8), 6093–6101 (2010)CrossRefGoogle Scholar
  10. 10.
    Cetisli, B., Barkana, A.: Speeding up the scaled conjugate gradient algorithm and its application in neuro-fuzzy classifier training. Soft Comput. 14(4), 365–378 (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, L., Chen, C.: Pre-shaped fuzzy c-means algorithm (pfcm) for transparent membership function generation. In: IEEE International Conference on Systems, Man and Cybernetics, 2007. ISIC, pp. 789–794 (2007)Google Scholar
  12. 12.
    Chen, L., Chen, C., Pedrycz, W.: A gradient-descent-based approach for transparent linguistic interface generation in fuzzy models. IEEE Trans. Syst. Man Cybern. B 40(5), 1219–1230 (2010)CrossRefGoogle Scholar
  13. 13.
    Cococcioni, M., Lazzerini, B., Marcelloni, F.: On reducing computational overhead in multi-objective genetic takagi-sugeno fuzzy systems. Appl. Soft Comput. 11(1), 675–688 (2011)CrossRefGoogle Scholar
  14. 14.
    Gacto, M., Alcala, R., Herrera, F.: Integration of an index to preserve the semantic interpretability in the multiobjective evolutionary rule selection and tuning of linguistic fuzzy systems. IEEE Trans. Fuzzy Syst. 18(3), 515–531 (2010)CrossRefGoogle Scholar
  15. 15.
    Kumar, M., Mao, Y., Wang, Y., Qiu, T., Chenggen, Y., Zhang, W.: Fuzzy theoretic approach to signals and systems: static systems. Inf. Sci. 418, 668–702 (2017).  https://doi.org/10.1016/j.ins.2017.08.048 CrossRefGoogle Scholar
  16. 16.
    Kumar, M., Stoll, N., Stoll, R.: Adaptive fuzzy filtering in a deterministic setting. IEEE Trans. Fuzzy Syst. 17(4), 763–776 (2009)CrossRefGoogle Scholar
  17. 17.
    Kumar, M., Stoll, N., Stoll, R.: On the estimation of parameters of takagi-sugeno fuzzy filters. IEEE Trans. Fuzzy Syst. 17(1), 150–166 (2009)CrossRefGoogle Scholar
  18. 18.
    Kumar, M., Stoll, N., Stoll, R.: Variational bayes for a mixed stochastic/deterministic fuzzy filter. IEEE Trans. Fuzzy Syst. 18(4), 787–801 (2010)CrossRefGoogle Scholar
  19. 19.
    Kumar, M., Stoll, N., Stoll, R.: Stationary fuzzy fokker-planck learning and stochastic fuzzy filtering. IEEE Trans. Fuzzy Syst. 19(5), 873–889 (2011)CrossRefGoogle Scholar
  20. 20.
    Kumar, M., Stoll, N., Thurow, K., Stoll, R.: Fuzzy membership descriptors for images. IEEE Trans. Fuzzy Syst. 24(1), 195–207 (2016)CrossRefGoogle Scholar
  21. 21.
    Kumar, M., Stoll, R., Stoll, N.: Deterministic approach to robust adaptive learning of fuzzy models. IEEE Trans. Syst. Man Cybern. B 36(4), 767–780 (2006)CrossRefGoogle Scholar
  22. 22.
    Kumar, M., Weippert, M., Arndt, D., Kreuzfeld, S., Thurow, K., Stoll, N., Stoll, R.: Fuzzy filtering for physiological signal analysis. IEEE Trans. Fuzzy Syst. 18(1), 208–216 (2010)CrossRefGoogle Scholar
  23. 23.
    Liao, T., Celmins II, A.K., H, R.J.: A fuzzy c-means variant for the generation of fuzzy term sets. Fuzzy Sets Syst. 135(2), 241–257 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  25. 25.
    Makrehchi, M., Basir, O., Kamel, M.: Generation of fuzzy membership function using information theory measures and genetic algorithm. In: Bilgiç, T., De Baets, B., Kaynak, O. (eds.) Fuzzy Sets and Systems—IFSA 2003. Lecture Notes in Computer Science, vol. 2715, pp. 603–610. Springer, Berlin (2003)CrossRefGoogle Scholar
  26. 26.
    Mottaghi-Kashtiban, M., Khoei, A., Hadidi, K.: Optimization of rational-powered membership functions using extended kalman filter. Fuzzy Sets Syst. 159(23), 3232–3244 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Oh, S.K., Pedrycz, W., Park, H.S.: Hybrid identification in fuzzy-neural networks. Fuzzy Sets Syst. 138(2), 399–426 (2003)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Pedrycz, W., Vukovich, G.: On elicitation of membership functions. IEEE Trans. Syst. Man Cybern. A 32(6), 761–767 (2002)CrossRefGoogle Scholar
  29. 29.
    Pulkkinen, P., Koivisto, H.: A dynamically constrained multiobjective genetic fuzzy system for regression problems. IEEE Trans. Fuzzy Syst. 18(1), 161–177 (2010)CrossRefGoogle Scholar
  30. 30.
    Robles, I., Alcalá, R., Benítez, J.M., Herrera, F.: Evolutionary parallel and gradually distributed lateral tuning of fuzzy rule-based systems. Evolut. Intell. 2(1–2), 5–19 (2009)CrossRefGoogle Scholar
  31. 31.
    Simon, D.: \(H_{\infty }\) estimation for fuzzy membership function optimization. Int. J. Approx. Reason. 40(3), 224–242 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008). http://www.vlfeat.org/
  33. 33.
    Zhou, S.M., Gan, J.Q.: Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling. Fuzzy Sets Syst. 159(23), 3091–3131 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Weiping Zhang
    • 1
  • Mohit Kumar
    • 2
    • 3
  • Yunfeng Zhou
    • 4
  • Jingzhi Yang
    • 4
  • Yihua Mao
    • 5
  1. 1.Department of Electronic Information EngineeringNanchang UniversityNanchangChina
  2. 2.Faculty of Computer Science and Electrical EngineeringUniversity of RostockRostockGermany
  3. 3.Binhai Industrial Technology Research Institute of Zhejiang UniversityTianjinChina
  4. 4.Binhai Industrial Technology Research Institute of Zhejiang UniversityTianjinChina
  5. 5.Zhejiang University College of Civil Engineering and ArchitectureHangzhouChina

Personalised recommendations