Advertisement

Cluster Computing

, Volume 22, Supplement 5, pp 11821–11839 | Cite as

Improving image steganalyser performance through curvelet transform denoising

  • J. Hemalatha
  • M. K. Kavitha Devi
  • S. GeethaEmail author
Article
  • 349 Downloads

Abstract

The major challenge of feature based blind steganalysers lies in designing effective image features which give true evidence of the stego noise rather than the natural noise present in the images. Hence they report low detection accuracy in real time implementation in spite of employing 100s of features in the process. In this paper, we coin a new paradigm for detecting steganography by examining the task as a three-steps process with the following repercussions: (a) employing curvelet transform denoising as a pre-processing step that produces better stego noise residuals suppressing the natural noise residual rather than a general denoising step before feature extraction, (b) extracting various steganalytic features, both in spatial domain as well transform domain and (c) implementing the system based on an efficient classifier, multi-surface proximal support vector machine ensemble oblique random rotation forest, that provides detection rate superior to other existing classifiers. Extensive experimentation with huge database of clean and steganogram images produced from seven steganographic schemes with varying embedding rates, and using five steganalysers, shows that the proposed paradigm improves the detection accuracy substantially and proves to be a high performance strategy even at low embedding rates. This model can be employed as a preprocessing component for any image steganalyser and high performance accuracy can be obtained.

Keywords

Curvelet transform denoising Steganalytic features Efficient classifier Multi-surface proximal support vector machine 

References

  1. 1.
    Pevny, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Bohme, R., SafaviNaini, R. (eds.) 12th International Workshop on Information Hiding. Lecture Notes in Computer Science, Calgary, Canada, 28–30 June, pp. 161–177. Springer, New York (2010)Google Scholar
  2. 2.
    Holub, V., Fridrich, J.: Designing steganographic distortion using directional filters. In: IEEE Workshop on Information Forensic and Security, Tenerife, Canary Islands, 2–5 December, pp. 234–239 (2012)Google Scholar
  3. 3.
    Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 1, 1–13 (2014). http://jis.eurasipjournals.com/content/2014/1/1
  4. 4.
    Couchot, J.-F., Couturier, R., Guyeux, C.: STABYLO: steganography with adaptive, Bbs, and binary embedding at low cost. Ann. Telecommun. 70(9–10), 441–449 (2015).  https://doi.org/10.1007/s12243-015-0466-7
  5. 5.
    Luo, W., Huang, F., Huang, J.: Edge adaptive image steganography based on LSB matching revisited. IEEE Trans. Inf. Forensics Secur. 5(2), 201–214 (2010)CrossRefGoogle Scholar
  6. 6.
    Fridrich, J., Kodovsk, J.: Multivariate Gaussian model for designing additive distortion for steganography. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2949–2953 (2013)Google Scholar
  7. 7.
    Ker, A.D., Bas, P., Bohme, R., Cogranne, R., Craver, S., Filler, T., Fridrich, J., Pevny, T.: Moving steganography and steganalysis from the laboratory into the real world. In: Proceedings of the 1st ACM Workshop on Information Hiding and Multimedia Security, IH and MMSec’2013, Montpellier, France, June 2013, pp. 45–58. ACM (2013)Google Scholar
  8. 8.
    Pevny, T.: Detecting messages of unknown length. In: Proceedings of SPIE Media Watermarking, Security, and Forensics, Part of IS and T/SPIE 21st Annual Symposium on Electronic Imaging, SPIE’2011, San Francisco, California, USA, vol. 7880 (2011)Google Scholar
  9. 9.
    Fridrich, J., Kodovsky, J., Holub, V., Goljan, M.: Breaking HUGO—the process discovery. In: Proceedings of the 13th International Conference on Information Hiding, IH’2011, Prague, Czech Republic. Lecture Notes in Computer Science, vol. 6958, pp. 85–101. Springer (2011)Google Scholar
  10. 10.
    Kodovsky, J., Fridrich, J.: On completeness of feature spaces in blind steganalysis. In: Proceedings of the 10th ACM Workshop on Multimedia and Security, MM and Sec’2008, Oxford, UK, September 2008, pp. 123–132 (2008)Google Scholar
  11. 11.
    Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)CrossRefGoogle Scholar
  12. 12.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)CrossRefGoogle Scholar
  13. 13.
    Kodovsky, J., Fridrich, J., Holub, V.: Ensemble classifiers for steganalysis of digital media. IEEE Trans. Inf. Forensics Secur. 7(2), 432–444 (2012)CrossRefGoogle Scholar
  14. 14.
    Lubenko, I., Ker, A.D.: Steganalysis with mismatched covers: do simple classifiers help? In: Proceedings of the 14th ACM multimedia and Security Workshop, MM and Sec’2012, Coventry, UK, September 2012, pp. 11–18 (2012)Google Scholar
  15. 15.
    Denemark, T., Sedighi, V., Holub, V., Cogranne, R., Fridrich, J.: Selection-channel-aware rich model for steganalysis of digital images. In: Proceedings of the IEEE International Workshop on Information Forensics and Security, WIFS’2014, Atlanta, GA, December 2014, pp. 48–53(2014)Google Scholar
  16. 16.
    Cogranne, R., Denemark, T., Fridrich, J.: Theoretical model of the FLD ensemble classifier based on hypothesis testing theory. In: Proceedings of IEEE International Workshop on Information Forensics and Security, WIFS’2014, Atlanta, GA, December 2014, pp. 167–172 (2014)Google Scholar
  17. 17.
    Chaumont, M., Kouider, S.: Steganalysis by ensemble classifiers with boosting by regression, and post-selection of features. In: Proceedings of IEEE International Conference on Image Processing, ICIP’2012, Lake Buena Vista (suburb of Orlando), Florida, USA, September 2012, pp. 1133–1136 (2012)Google Scholar
  18. 18.
    Pasquet, J., Bringay, S., Chaumont, M.: Steganalysis with cover-source mismatch and a small learning database. In: Proceedings of the 22nd European Signal Processing Conference 2014, EUSIPCO’2014, Lisbon, Portugal, September 2014, pp. 2425–2429 (2014)Google Scholar
  19. 19.
    Avcibas, I., Kharrazi, M., Memon, N., Sankur, B.: Image steganalysis with binary similarity measures. EURASIP J. Appl. Signal Process. 17, 2749–2757 (2005)zbMATHGoogle Scholar
  20. 20.
    Gul, G., Kurugollu, F.: SVD-based universal spatial image steganalysis. IEEE Trans. Inf. Forensics Secur. 5(2), 349–353 (2010)CrossRefGoogle Scholar
  21. 21.
    Yu, J., Li, F., Cheng, H., Zhang, X.: Spatial steganalysis using contrast of residuals. IEEE Signal Process. Lett. (2016).  https://doi.org/10.1109/LSP.2016.2575100
  22. 22.
    Chen, X., Wang, Y., Tan, T., Guo, L.: Blind image steganalysis based on statistical analysis of empirical matrix. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR), Hong Kong, China, pp. 11–7–10 (2006)Google Scholar
  23. 23.
    Fridrich, J., Kodovsky, J., Holub, V., Goljan, M.: Steganalysis of content-adaptive steganography in spatial domain. In: Proceedings of the 13th International Workshop on Information Hidings, Prague, Czech Republic. LNCS, vol. 6958, pp. 102–112 (2011)Google Scholar
  24. 24.
    Xuan, G., Shi, Y.Q., Huang, C., Fu, D., Zhu, X., Chai, P.: Steganalysis using high-dimensional features derived from co-occurrence matrix and class-wise non principal components analysis (CNPCA). In: Proceedings of the 5th International workshop on Digital Watermarking, vol. 4283, pp. 49–60 (2006)Google Scholar
  25. 25.
    Wang, P., Wei, Z., Xiao, L.: Fast projections of spatial rich model feature for digital image steganalysis. Soft Comput. (2016a).  https://doi.org/10.1007/s00500-015-2011-z
  26. 26.
    Wang, P., Wei, Z., Xiao, L.: Pure spatial rich model features for digital image steganalysis. Multimed. Tools Appl. 75(5), 2897–2912 (2016b)CrossRefGoogle Scholar
  27. 27.
    Zhang, Y., Luo, X., Yang, C., Liu, F.: Joint JPEG compression and detection-resistant performance enhancement for adaptive steganography using feature regions selection. Multimed. Tools Appl. 76(3), 3649–3668 (2017)CrossRefGoogle Scholar
  28. 28.
    Shi, Y.Q., Chen, C., Chen, W.: A Markov process based approach to effective attacking JPEG steganography. In: Proceedings of the International Workshop on Information Hiding IH, pp. 249–264 (2006)Google Scholar
  29. 29.
    Feng, B., Lu, W., Sun, W.: Binary image steganalysis based on pixel mesh Markov transition matrix. J. Vis. Image Represent. 26, 284–295 (2015)CrossRefGoogle Scholar
  30. 30.
    Pevny, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. (2010).  https://doi.org/10.1109/TIFS.2010.2045842
  31. 31.
    Chen, X., Gao, G., Liu, D., Xia, Z.: Steganalysis of LSB matching using characteristic function moment of pixel differences. China Commun. (2016).  https://doi.org/10.1109/CC.2016.7559077
  32. 32.
    Laimeche, L., Merouani, H.F., Mazouzi, S.: A new feature extraction scheme in wavelet transform for stego image classification. Evol. Syst. (2017).  https://doi.org/10.1007/s12530-017-9174-z
  33. 33.
    Chaeikar, S.S., Zamani, M., Manaf, A.B.A., Zeki, A.M.: PSW statistical LSB image steganalysis. Multimed. Tools Appl. (2017).  https://doi.org/10.1007/s11042-016-4273-6
  34. 34.
    Pathak, P., Selvakumar, S.: Blind image steganalysis of JPEG images using feature extraction through the process of dilation. Digit. Investig. 11, 67–77 (2014)CrossRefGoogle Scholar
  35. 35.
    Yu, J., Zhang, X., Li, F.: Spatial steganalysis using redistributed residuals and diverse ensemble classifier. Multimed. Tools Appl. 75, 13613–13625 (2016)CrossRefGoogle Scholar
  36. 36.
    Li, F., Wu, K., Lei, J., Wen, M., Bi, Z., Gu, C.: Steganalysis over large-scale social networks with high-order joint features and clustering ensembles. IEEE Trans. Inf. Forensics Secur. 11(2), 344–357 (2016)Google Scholar
  37. 37.
    Gireesh Kumar, T., Jithin, R., Shankar, D.D.: Feature based steganalysis using wavelet decomposition and magnitude statistics. In: Proceedings of International Conference on Advances in Computer Engineering, pp. 298–300 (2010)Google Scholar
  38. 38.
    Lie, W.-N., Lin, G.-S.: A feature-based classification technique for blind image steganalysis. IEEE Trans. IFS (2005).  https://doi.org/10.1109/TMM.2005.858377
  39. 39.
    Xia, Z., Sun, X., Liang, W., Qin, J., Li, F.: JPEG image steganalysis using joint discrete cosine transform domain feature. J. Electron. Imaging (2010).  https://doi.org/10.1117/1.3421972
  40. 40.
    Zong, H., Liu, F-l, Luo, X-y: Blind image steganalysis based on wavelet coefficient correlation. Digit. Investig. 9(1), 58–68 (2012)CrossRefGoogle Scholar
  41. 41.
    Geetha, S., Sivatha Sindhu, S.S., Kamaraj, N.: Passive steganalysis based on higher order image statistics of curvelet transform. Int. J. Autom. Comput. 10(4), 531–542 (2010)CrossRefGoogle Scholar
  42. 42.
    Muthuramalingam, S., Karthikeyan, N., Geetha, S., Sindhu, S.S.: Sindhu, Siva S.: Stego anomaly detection in images exploiting the curvelet higher order statistics using evolutionary support vector machine. Multimed. Tools Appl. 75(21), 13627–13661 (2016)CrossRefGoogle Scholar
  43. 43.
    Starck, J.-L., Candes, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. (2002).  https://doi.org/10.1109/TIP.2002.1014998
  44. 44.
    Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. SIAM Multiscale Model. Simul. (2006).  https://doi.org/10.1137/05064182X
  45. 45.
    PictureMarc, Embed Watermark, v 1.00.45. Digimarc CorpGoogle Scholar
  46. 46.
    Kutterand, M., Jordan, F.: JK-PGS (Pretty Good Signature). Signal Processing Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne. http://ltswww.epfl.ch/ kutter/watermarking/JK PGS.html (1998)Google Scholar
  47. 47.
    Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  48. 48.
  49. 49.
    Steganos Security Suite. http://www.steganos.com/english/steganos/download.htmGoogle Scholar
  50. 50.
  51. 51.
    Kim, Y.S., Kwon, O.H., Park, R.H.: Wavelet based watermarking method for digital images using the human visual system. Electron. Lett. 35(6), 466–468 (1999)CrossRefGoogle Scholar
  52. 52.
    Kaushal, S., Anindya, S., Manjunath, B.S.: YASS: yet another steganographic scheme that resists blind steganalysis. In: 9th International Workshop on Information Hiding, Saint Malo, Brittany, France, June (2007)Google Scholar
  53. 53.
  54. 54.
    Feng, L., Lin, L.: Image denoising methods based on wavelet transform and threshold functions. J. Multimed. Process. Technol. 8(1), 1–10 (2017)Google Scholar
  55. 55.
    Suresh, A., Varatharajan, R.: Competent resource provisioning and distribution techniques for cloud computing environment. Clust. Comput. J. Netw. Softw. Tools Appl. ISSN: 1386-7857 (Print), 1573-7543 (2017) (Online).  https://doi.org/10.1007/s10586-017-1293-6
  56. 56.
    Sajedi, H.: Image steganalysis using Artificial Bee Colony algorithm. J. Exp. Theor. Artif. Intell. 29(5), 949–966 (2017)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Sedighi, V., Fridrich, J.: Histogram layer, moving convolutional neural networks towards feature-based steganalysis. Electron. Imaging 2017(7), 50–55 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of CSEThiagarajar College of EngineeringMaduraiIndia
  2. 2.School of Computing Science and EngineeringVITChennaiIndia

Personalised recommendations