Cluster Computing

, Volume 22, Supplement 5, pp 11755–11764 | Cite as

Millimeter wave CMOS minimum noise amplifier for automotive radars in the frequency band (60–66 GHZ)

  • K. SuganthiEmail author
  • S. Malarvizhi


At 60 GHz, millimeter wave circuit design a great gain and small noise figure (NF) is preferable at radio frequency front end. Broad bandwidth is preferred over wireless personal area network and radio detection and ranging. The necessities of a recipient front-end join extraordinary data and yield impedance organizing, high port-to-port separation, low clamor, and high increase over the whole band of intrigue. These requirements are satisfied by the proposed Low-Noise Amplifier design. Conversion gain (S\(_{21})\) of 11.289 dB, NF of 1.819 dB, the stability of 2.167, Bandwidth of 16.5 GHz are achieved. Also, input and output replication factors are S\(_{11}\) = − 12.148 dB and S\(_{22}\) = − 12.238 dB. Impedance matching has finished by transmission lines. Propelled design system has utilized for pre-format and post-format simulation. Low Noise Amplifier is implemented in 180 nm CMOS development. As compared with other traditional strategies the proposed ADS is achieved low power utilization of 7.25 mW from a 1.5 V supply and it accomplishes a voltage achievement of 12 dB, 3-dB bandwidth of 60 GHz.


Advanced design system (ADS) CMOS, CG, Low noise amplifier (LNA) MilliMeter wave (MMW) Noise figure (NF) Radio frequency (RF) Wireless PAN (WPAN) 



The journalists would like to acknowledge Electronics and Communication Engineering department of SRM University for providing (Advanced Design System) ADS software for this research work. The writers would like to thank, ECE department of SRM University for providing DST-FIST Lab for their research work.


  1. 1.
    Lin, Y.S.: A low power and low noise 60-GHz CMOS receiver front-end with high conversion gain and excellent port-to-port isolation. Analog Integr. Circuit Signal Process. 83(2), 119–128 (2015)CrossRefGoogle Scholar
  2. 2.
    Doan, C.H., Emami, S., Niknejad, A.M., Broderson, R.W.: Millimeter-wave CMOS design. IEEE J. Solid-State Circuits 40(1), 144–155 (2005)CrossRefGoogle Scholar
  3. 3.
    Franca-Neto, L.M., Bloechel, B.A., Soumyanath, A.K.: 17GHz and 24GHz LNA designs based on extended S-parameter with microstrip on die in 180nm CMOS technology. In Proceedings of the 29th European Solid State Circuits Conference, pp. 149–152, Sept 2003Google Scholar
  4. 4.
    Craninckx, J., Liu, M., Hauspie, D., Giannini, V., Kim, T., Lee, J., Libois, M., et al.: A fully reconfigurable software-defined radio transceiver in 0.13 m CMOS. In: IEEE ISSCC Digest of Technical Papers, pp. 346–607. IEEE, Feb 2007Google Scholar
  5. 5.
    Liao, C.F., Liu, S.I.: A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receivers. IEEE J. Solid-State Circuits 42, 329–339 (2007)CrossRefGoogle Scholar
  6. 6.
    Hasch, J., Toprak, E., Schnabel, R., Zwick, T., Weigel, R., Waldschmidt, C.: Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans. Microw. Theory Techn. 60(3), 844–860 (2012)CrossRefGoogle Scholar
  7. 7.
    Wang, L., Borngraeber, J., Winkler, W.: A single-ended fully integrated SiGe 77/79 GHz receiver for automotive radar. IEEE J. SolidState Circuits 43(9), 388–391 (2006)Google Scholar
  8. 8.
    Nicolson, S.T., Yau, K.H.K., Pruvost, S., Danelon, V., Chevalier, P., Garcia, P., Chantre, A., Sautreuil, B., Voinigescu, S.P.: A low-voltage SiGe BiCMOS 77-GHz automotive radar chipset. IEEE Trans. Microw. Theory Techn. 56(5), 1092–1104 (2008)CrossRefGoogle Scholar
  9. 9.
    Mitomo, T., Ono, N., Hoshino, H., Yoshihara, Y., Watanabe, O., Seto, I.: A 77 GHz 90 nm CMOS transceiver for FMCW radar applications. IEEE J. Solid-State Circuits 45(4), 928–937 (2010)CrossRefGoogle Scholar
  10. 10.
    Lee, J., Li, Y.A., Hung, M.H., Huang, S.J.: A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology. IEEE J. Solid-State Circuits 45(12), 2746–2756 (2010)CrossRefGoogle Scholar
  11. 11.
    Ku, B.-H., Inc, O., Chang, M., Rebeiz, G.M.: 75–85 GHz flip-chip phased array RFIC with simultaneous 8-transmit and 8-receive paths for automotive radar applications. In: Radio Frequency Integrated Circuits Symposium (RFIC), pp. 371–374. IEEE (2013)Google Scholar
  12. 12.
    Kim, S.Y., Rebeiz, G.M.: A low-power BiCMOS 4-element phased array receiver for 76–84 GHz radars and communication systems. IEEE J. Solid-State Circuits 47(2), 359–367 (2012)CrossRefGoogle Scholar
  13. 13.
    Sjoland, H., Karimi-Sanjana, A., Abidi, A.A.: A merged CMOS LNA and mixer for a WCDMA receiver. IEEE J. Solid-State Circuits 38, 1045–1050 (2003)CrossRefGoogle Scholar
  14. 14.
    Harvey, J., Harjani, R.: Analysis and design of an integrated quadrature mixer with improved noise, gain and image rejection. IEEE Int. Symp. Circuits Syst. 4, 786–789 (2001)Google Scholar
  15. 15.
    Klumperink, E.A.M., Shrestha, R., Mensink, E., Arkesteijn, V.J., Nauta, B.: Cognitive radios for dynamic spectrum access-polyphase multipath radio circuits for dynamic spectrum access. IEEE Commun. Mag. 45, 104–112 (2007)CrossRefGoogle Scholar
  16. 16.
    Gilbert, B.: The MICROMIXER: a highly linear variant of the Gilbert mixer using a bisymmetric class-AB input stage. IEEE J. Solid-State Circuits 32, 1412–1423 (1997)CrossRefGoogle Scholar
  17. 17.
    Amer, A., Hegazi, E., Ragaie, H.F.: A 90-nm wideband merged CMOS LNA and mixer exploiting noise cancellation. IEEE J. Solid-State Circuits 42, 323–328 (2007)CrossRefGoogle Scholar
  18. 18.
    Razavi, B., Microelectronics, R.F.: Upper Saddle River. Prentice-Hall, New Jersey (1988)Google Scholar
  19. 19.
    Riccardo Tomas1, Hussein Khaleel, Federico Penna1, Claudio Pastrone “Frequency agility in IPv6-based wireless personal area networks (6LoWPAN). In: International Conference on Wired/Wireless Internet Communications, pp. 146–157. Springer, Berlin (2010)Google Scholar
  20. 20.
    Weiler, R.J., Peter, M., Keusgen, W., Maltsev, A.: Quasi-deterministic millimeter-wave channel models in MiWEBA. EURASIP J. Wirel. Commun. Netw. 2016(1), 84 (2016)CrossRefGoogle Scholar
  21. 21.
    Bauer, F., Wang, X., Menzel, W., Stelzer, A.: A 79-GHz radar sensor in LTCC technology using grid array antennas. IEEE Trans. Microw. Theory Techn. 61(6), 2514–2521 (2013)CrossRefGoogle Scholar
  22. 22.
    Lin, Y.S., Lee, J.H.: A low power and low noise and high linearity noise 60-GHz Wideband CMOS low-noise amplifier for wireless personal area network (WPAN) systems. Analog Integr. Circuit Signal Process. 80(2), 39–47 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lin, Y.S., Chen, C.C., Lee, C.Y.: 7.2mW CMOS low noise amplifier with 17.3dB gain and 7.7dB NF for 76–77 GHz long range and 77–81GHz short-range automotive radars. Analog Integr. Circuit. Signal Process. 87(1), 1–9 (2016)Google Scholar
  24. 24.
    Chen, C.C., Lin, Y.S., Huang, P.L., Chang, J.F., Lu, S.S.: A 4.9dB NF 53.5–62GHz. Micro-machined CMOS wideband LNA with small group delay variation. In: IEEE international microwave Symposium Digest, pp. 489–498, June 2010Google Scholar
  25. 25.
    Fujimoto, T., Ono, N., Tachibana, R., Hoshino, H.: A 60-GHz CMOS receiver front-end with frequency synthesizer. IEEE J. Solid-State Circuits 43(4), 1030–1037 (2008)CrossRefGoogle Scholar
  26. 26.
    Emami, S., Doan, C.H., Niknejad, A.M., Brodersen, R.W.: A highly integrated 60 GHz CMOS front-end receiver. In: IEEE International Solid-State Circuits Conference, pp. 549–558 (2007)Google Scholar
  27. 27.
    Chen, H.K., Lin, Y.S., Lu, S.S., et al.: Analysis and design of a 1.6-28-GHz compact wideband LNA in 90-nm CMOS using a p-match input network. IEEE Trans. Microw. Theory Techn. 58(8), 2092–2104 (2010)Google Scholar
  28. 28.
    Lee, S., Bergervoet, J., Harish, KS., Leenaerts, D., Roovers, R., van de Beek, R., van der Weide, G.: A broadband receiver chain in 65 nm CMOS. In: IEEE ISSCC igest of Technical Papers, pp. 418–612. IEEE, Feb 2007Google Scholar
  29. 29.
    Bagheri, R., Mirzaei, A., Chehrazi, S., Heidari, M.E., Lee, M., Mikhemar, M., Tang, W., Abidi, A.A.: An 800- MHz-6-GHz software-defined wireless receiver in 90-nm CMOS. IEEE J. Solid-State Circuits 41, 2860–2876 (2006)CrossRefGoogle Scholar
  30. 30.
    Blaakmeer, S.C., Klumperink, E.A.M., Nauta, B., Leenaerts, D.M.W.: An inductor less wideband balun-LNA at 65 nm CMOS with balanced output. In: Proceedings of the 33rd European Solid-State Circuits Conference (ESSCIRC), pp. 364–367. IEEEGoogle Scholar
  31. 31.
    Blaakmeer, S.C., Klumperink, E.A.M., Leenaerts, D.M.W., Nauta, B.: Wideband Balun-LNA with simultaneous output balancing, noise-canceling, and distortion-canceling. IEEE J. Solid-State Circuits 43, 1341–1350 (2008)CrossRefGoogle Scholar
  32. 32.
    Blaakmeer, S.C., Klumperink, E.A.M., Leenaerts, D.M.W., Nauta, B.: A wideband balun LNA I/Q-mixer combination in 65 nm CMOS. In: IEEE ISSCC Digest of Technical Papers, pp. 326–327, Feb 2008Google Scholar
  33. 33.
    Bruccoleri, F., Klumperink, E.A.M., Nauta, B.: Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE J. Solid-State Circuits 39, 275–282 (2004)CrossRefGoogle Scholar
  34. 34.
    Bruccoleri, F., Klumperink, E.A.M., Nauta, B.: Wideband low noise amplifiers exploiting thermal noise cancellation. Springer, New York (2005)Google Scholar
  35. 35.
    Jussila, J., Sivonen, P.: A 1.2-V highly linear balanced noise-canceling LNA in 0.13-m CMOS. IEEE J. Solid-State Circuits 43, 579–587 (2008)CrossRefGoogle Scholar
  36. 36.
    Blaakmeer, S.C., Klumperink, E.A.M., Leenaerts, D.M.W., Nauta, B.: A wideband noise-canceling CMOS LNA exploiting a transformer. In: Digest of Papers—IEEE Radio Frequency Integrated Circuits Symposium, pp. 137–140 (2006)Google Scholar
  37. 37.
    Arkesteijn, V.J.: Analog front-ends for software-defined radio receivers. University of Twente, Enschede, Ph.D (2007)Google Scholar
  38. 38.
    Arkesteijn, V.J., Klumperink, E.A.M., Nauta, B.: A wideband high-linearity RF receiver front-end in CMOS. In: Proceedings of the 30th European Solid-State Circuits Conference (ESSCIRC), pp. 71–74, Sept 2004Google Scholar
  39. 39.
    Chen, C.C., Lin, Y.S., Lee, J.H., Chang, J.F.: A 60 GHz CMOS receiver frontend with integrated out-of-phase Wilkinson power divider. In: IEEE Radio Frequency Integrated Circuits Symposium, pp. 373–376 (2010)Google Scholar
  40. 40.
    Chehrazi, S., Mirzaei, A., Bagheri, R., Abidi, A.A.: A 6.5 GHz wideband CMOS low noise amplifier for multi-band use. In: Proceedings of the IEEE Custom Integrated Circuits Conference (CICC’05), pp. 801–804, Sept 2005Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.SRM UniversityChennaiIndia

Personalised recommendations