Advertisement

Cluster Computing

, Volume 22, Supplement 3, pp 5663–5673 | Cite as

An improved LLE-based cluster security approach for nonlinear system fault diagnosis

  • Wei Zhang
  • Sheng GaoEmail author
  • Xu He
Article
  • 355 Downloads

Abstract

This paper proposes a novel improved LLE-based (local linear embedding) approach (TLLE) for solving the fault diagnosis problem of the nonlinear system. Firstly, tangent space distance is introduced to LLE approach, which can satisfy the local linearity of LLE and better preserve the local manifold features of the original data simultaneously. Then, to solve the problem of inner dimension in LLE approach is hard to estimate, the method of intrinsic dimension estimation based on fractal dimension is employed in the approach by means of linear fitting. Furthermore, a fault diagnosis scheme is presented based on the TLLE approach. We combine fault state with special distribution to complete the fault diagnosis, which can simplify the computation obviously and improve the real-time capability of the approach. Finally, numerical simulations of the TE process data are performed to illustrate the effectiveness of the proposed fault diagnosis scheme.

Keywords

Local linear embedding Tangent space distance Intrinsic dimension Fault diagnosis 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant 51505470 and 51605474, The State Key Laboratory of Robotics under Grant Y7C1200301.

Compliance with ethical standards

Conflicts of interest

The author(s) declare(s) that there is no conflict of interests regarding the publication of this article.

References

  1. 1.
    Zhang, J., Swain, A.K., Nguang, S.K.: Robust Observer-Based Fault Diagnosis for Nonlinear Systems Using MATLAB. Springer, Switzerland (2016)CrossRefGoogle Scholar
  2. 2.
    Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques: part i: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62(6), 3757–3767 (2015)CrossRefGoogle Scholar
  3. 3.
    Hotelling, H.: Analysis of a complex of statistical variables into principal components. Br. J. Educ. Psychol. 24(6), 417–520 (1933)CrossRefGoogle Scholar
  4. 4.
    Good, R.P., Kost, D., Cherry, G.A.: Introducing a unified PCA approach for model size reduction. IEEE Trans. Semicond. Manuf. 23(2), 201–209 (2010)CrossRefGoogle Scholar
  5. 5.
    Scholkopf, B., Smola, A.J., Muller, K.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)CrossRefGoogle Scholar
  6. 6.
    Ni, J., Zhang, C., Ren, L., Yang, S.X.: Abrupt event monitoring for water environment system based on KPCA and SVM. IEEE Trans. Instrum. Meas. 61(4), 980–989 (2012)CrossRefGoogle Scholar
  7. 7.
    Yoshikazu, W.: Adaptive subset kernel principal component analysis for time-varying patterns. IEEE Trans. Neural Netw. Learn. Syst. 23(12), 1961–1973 (2012)CrossRefGoogle Scholar
  8. 8.
    Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(22), 2323–2326 (2000)CrossRefGoogle Scholar
  9. 9.
    Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  10. 10.
    Samuel, K., Martin, D.L.: Face Diagnosis in Gray Scale Images Using Locally Linear Embeddings. Elsevier, Amsterdam (2007)Google Scholar
  11. 11.
    Hadid, A., Koouropteva, O., Pietikainen, M.: Unsupervised learning using locally linear embedding: experiments with face pose analysis, pp. 111–114. In: Proceedings of the 16th International Conference on Pattern Recognition (2002)Google Scholar
  12. 12.
    Heureuxa, P.J., Carreaua, J., Bengioa, Y., Delalleaua, O., Yueb, S.Y.: Locally linear embedding for dimensionality reduction in QSAR. J. Comput. Aided Mol. Des. 18, 475–482 (2004)CrossRefGoogle Scholar
  13. 13.
    Zhao, S., Zhu, S.A.: Face recognition by LLE dimensionality reduction. Fourth Int. Conf. Intell. Comput. Technol. Autom. 2011, 121–123 (2011)Google Scholar
  14. 14.
    Sun, B.Y., Zhang, X.M., Li, J., Mao, X.M.: Feature fusion using locally linear embedding for classification. IEEE Trans. Neural Netw. 21(1), 163–168 (2010)CrossRefGoogle Scholar
  15. 15.
    Li, Z., Yan, X., Yuan, C., Zhao, J., Peng, Z.: A new method of nonlinear feature extraction for multi-fault diagnosis of rotor systems. Noise Vib. Worldw. 41(10), 29–37 (2010)CrossRefGoogle Scholar
  16. 16.
    Ridder, D.D., Kouropteva, O., Okun, O.: Supervised Locally Linear Embedding, Joint International Conference on Artificial Neural Networks and Neural Information Processing, pp. 333–341. Springer, New York (2003)zbMATHGoogle Scholar
  17. 17.
    Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4(2), 119–155 (2003)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hastie, T., Tibshirani, R.: Discriminant adaptive nearest-neighbor classification. IEEE Pattern Recognit. Mach. Intell. 243(18), 607–616 (1996)CrossRefGoogle Scholar
  19. 19.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  20. 20.
    Min, W.L., Lu, L., He, X.F.: Locality pursuit embedding. Pattern Recognit. 37(4), 781–788 (2004)CrossRefGoogle Scholar
  21. 21.
    K\(\acute{\rm {e}}\)gl, B.: Intrinsic dimension estimation using packing numbers, pp. 697–704. In: Advances in Neural Information Processing Systems (2002)Google Scholar
  22. 22.
    Grassbergel, J., Procacria, I.: Measuring the strangeness of strange attractor. Physical D 9, 189–208 (1983)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Bengio, Y., Vincent, P., Delalleau, O., Roux, N. L., Ouimet, M.: Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering, pp. 177–184. In: International Conference on Neural Information Processing Systems, MIT Press (2003)Google Scholar
  24. 24.
    Taylor, J.S., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  25. 25.
    Downs, J.J., Vogel, E.F.: Plant-wide industrial process control problem. Comput. Chem. Eng. 17(3), 245–255 (1993)CrossRefGoogle Scholar
  26. 26.
    Chiang, L.H., Russell, E.L., Braatz, R.D.: Fault Diagnosis and Diagnosis in Industrial Systems. Advanced Textbooks in Control and Signal Processing. Springer, London (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Shenyang Institute of Automation, Chinese Academy of SciencesShenyangChina

Personalised recommendations