Cluster Computing

, Volume 22, Supplement 4, pp 9715–9726 | Cite as

Proficient algorithms for enhancing topology control for dynamic clusters in MANET

  • P. RamyaEmail author
  • V. Gopalakrishnan


The paper suggest a series of algorithms for improving the topology control for dynamic cluster for MANET. The paper identifies the problem of network capacity and congestion and resolves by solving the NP-hard problem of \(\alpha \)-MOC-CDS based \(\alpha \)-D-equivalence class-MOC-CDS (\(\alpha \)-DEC-MOC-CDS) with D-equivalence class. The limitations in \(\alpha \)-DEC-MOC-CDS are considered and resolved by introducing the timer based \(\alpha \)-DEC-MOC-CDS using initiators with minimum localized information. The approach was improved using optimization in terms of network capacity with optimized \(\alpha \)-DEC-MOC-CDS (O-\(\alpha \)-DEC-MOC-CDS) using Kiefer–Wolfowitz stochastic approximation algorithm. Congestion and failure-aware O-\(\alpha \)-DEC-MOC-CDS (CFA-O-\(\alpha \)-DEC-MOC-CDS) was introduced for eliminating the congestion and avoiding node failures. The experimental results show that the algorithms reduce the effects of congestion and node failure and maintain the overall MANET performance with efficient topology control.


Congestion Topology Routing Failure 


  1. 1.
    Ding, L., Wu, W., Willson, J., Du, H., Lee, W., Du, D.Z.: Efficient algorithms for topology control problem with routing cost constraints in wireless networks. IEEE Trans. Parallel Distrib. Syst. 22(10), 1601–1609 (2011)CrossRefGoogle Scholar
  2. 2.
    Ang, C.W., Tham, C.K.: iMST: a bandwidth-guaranteed topology control algorithm for TDMA-based ad hoc networks with sectorized antennas. Comput. Netw. 52(9), 1675–1692 (2008)CrossRefGoogle Scholar
  3. 3.
    Cuzzocrea, A., Papadimitriou, A., Katsaros, D., Manolopoulos, Y.: Edge betweenness centrality: a novel algorithm for QoS-based topology control over wireless sensor networks. J. Netw. Comput. Appl. 35(4), 1210–1217 (2012)CrossRefGoogle Scholar
  4. 4.
    Senthil Kumar, T., Suresh, A., Karumathil, A.: Improvised Classification Model for Cloud based Authentication using Keystroke Dynamics Frontier and Innovation in Future Computing and Communications. Lecture Notes in Electrical Engineering (LNEE), vol. 301, pp. 885–893, 2014 (2014)Google Scholar
  5. 5.
    Zarifzadeh, S., Yazdani, N., Nayyeri, A.: Energy-efficient topology control in wireless ad hoc networks with selfish nodes. Comput. Netw. 56(2), 902–914 (2012)CrossRefGoogle Scholar
  6. 6.
    Dai, F., Wu, J.: An extended localized algorithm for connected dominating set formation in ad hoc wireless networks. IEEE Trans. Parallel Distrib. Syst. 15(10), 908–920 (2004)CrossRefGoogle Scholar
  7. 7.
    Tan, Q., An, W., Han, Y., Liu, Y., Ci, S., Shao, F.M., Tang, H.: Energy harvesting aware topology control with power adaptation in wireless sensor networks. Ad Hoc Netw. 27, 44–56 (2015)CrossRefGoogle Scholar
  8. 8.
    Alzoubi, K.M., Wan, P.J., Frieder, O.: Message-optimal connected dominating sets in mobile ad hoc networks. In: Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 157–164 (2002)Google Scholar
  9. 9.
    Cheng, X., Huang, X., Li, D., Wu, W., Du, D.Z.: A polynomial-time approximation scheme for the minimum-connected dominating set in ad hoc wireless networks. Networks 42(4), 202–208 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    do Forte, V.L., Lucenaa, A., Maculana, N.: Formulations for the minimum 2-connected dominating set problem. Int. Netw. Optim. Conf. 41, 415–422 (2013)Google Scholar
  11. 11.
    Bao, L., Garcia-Luna-Aceves, J.J.: Topology management in ad hoc networks. In: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 129–140 (2003)Google Scholar
  12. 12.
    Gao, B., Yang, Y., Ma, H.: An efficient approximation scheme for minimum connected dominating set in wireless ad hoc networks. In: VTC2004-Fall. 2004 IEEE 60th Vehicular Technology Conference, 4, pp. 2744–2748 (2004)Google Scholar
  13. 13.
    Willson, J.K., Gao, X., Qu, Z., Zhu, Y., Li, Y., Wu, W.: Efficient distributed algorithms for topology control problem with shortest path constraints. Discret. Math. Algorithms Appl. 1(04), 437–461 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Du, H., Ye, Q., Zhong, J., Wang, Y., Lee, W., Park, H.: Polynomial-time approximation scheme for minimum connected dominating set under routing cost constraint in wireless sensor networks. Theor. Comput. Sci. 447, 38–43 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fu, D., Han, L., Liu, L., Gao, Q., Feng, Z.: An efficient centralized algorithm for connected dominating set on wireless networks. Procedia Comput. Sci. 56, 162–167 (2015)CrossRefGoogle Scholar
  16. 16.
    Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected dominating set in sensor networks and MANETs. In: Handbook of Combinatorial Optimization, Springer, Berlin, pp. 329–369 (2004)Google Scholar
  17. 17.
    Parthiban, N., Rajasingh, I., Rajan, R.S.: Minimum connected dominating set for certain circulant networks. Procedia Comput. Sci. 57, 587–591 (2015)CrossRefGoogle Scholar
  18. 18.
    Dagdeviren, O., Erciyes, K., Tse, S.: Semi-asynchronous and distributed weighted connected dominating set algorithms for wireless sensor networks. Comput. Stand. Interfaces 42, 143–156 (2015)CrossRefGoogle Scholar
  19. 19.
    Golovach, P.A., Heggernes, P., Kratsch, D.: Enumerating minimal connected dominating sets in graphs of bounded chordality. In: LIPIcs-Leibniz International Proceedings in Informatics, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik 43, 17–23 (2015)Google Scholar
  20. 20.
    Wan, P.J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dominating set in wireless ad hoc networks. Mobile Netw. Appl. 9(2), 141–149 (2004)CrossRefGoogle Scholar
  21. 21.
    Sakai ,K., Shen, F., Kim, K.M., Sun, M.T., Okada, H.: Multi-initiator connected dominating set construction for mobile ad hoc networks. In: ICC’08. IEEE International Conference on Communications, pp. 2431–2436 (2008)Google Scholar
  22. 22.
    Sakai, K., Sun, M.T., Ku, W.S.: Fast connected dominating set construction in mobile ad hoc networks. In: IEEE International Conference on Communications, pp. 1–6 (2009)Google Scholar
  23. 23.
    Dean, J., Claypool, D., Macker, J.P.: Temporally robust relay sets for mobile wireless networks. In: 2011-MILCOM Military Communications Conference, pp. 655–660 (2011)Google Scholar
  24. 24.
    Sakai, K., Huang, S.C., Ku, W.S., Sun, M.T., Cheng, X.: Timer-based CDS construction in wireless ad hoc networks. IEEE Trans. Mobile Comput. 10(10), 1388–1402 (2011)CrossRefGoogle Scholar
  25. 25.
    Sakai, K., Sun, M.T., Ku, W.S., Huang, S.C.H.: On mobility handling of sub-optimal timer-based CDS construction. Ad Hoc Netw. 29, 1–14 (2015)CrossRefGoogle Scholar
  26. 26.
    Ding, L., Melodia, T., Batalama, S.N., Matyjas, J.D.: Distributed routing, relay selection, and spectrum allocation in cognitive and cooperative ad hoc networks. In: 7th Annual IEEE Communications Society Conference on Sensor Mesh and Ad Hoc Communications and Networks (SECON), pp. 1–9 (2010)Google Scholar
  27. 27.
    Aarti, T.S.: Study of MANET: characteristics, challenges, application and security attacks. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(5), 252–257 (2013)Google Scholar
  28. 28.
    Guan, Q., Yu, F.R., Jiang, S., Leung, V.: Capacity-optimized topology control for MANETs with cooperative communications. IEEE Trans. Wirel. Commun. 10(7), 2162–2170 (2011)CrossRefGoogle Scholar
  29. 29.
    Dwivedi, A., Harshavardhana, P., Velez, P.G., Tebben, D.J.: Dynamic topology optimization for assuring connectivity in multihop mobile optical wireless communications networks. Johns Hopkins APL Tech. Dig. 30(2), 151–167 (2011)Google Scholar
  30. 30.
    de Morais, Cordeiro C., Agrawal, D.P.: Mobile ad hoc networking, Center for Distributed and Mobile Computing, ECECS, University of Cincinnati, pp. 1–63 (2002)Google Scholar
  31. 31.
    Rudkevich, A.M., Caramanis, M.C., Goldis, E.A., Li, X., Ruiz, P.A., Tsuchida, T.B., Philbrick, C.R., Tabors, R.D.: Advanced methods in transmission topology control optimization and their applications. In: 2nd International Symposium on Energy Challenges and Mechanics, Aberdeen, Scotland, UK (2014)Google Scholar
  32. 32.
    Chu, X., Sethu, H.: Cooperative topology control with adaptation for improved lifetime in wireless sensor networks. Ad Hoc Netw. 30, 99–114 (2015)CrossRefGoogle Scholar
  33. 33.
    Chen, L., Heinzelman, W.B.: QoS-aware routing based on bandwidth estimation for mobile ad hoc networks. IEEE J. Sel. Areas Commun. 23(3), 561–572 (2005)CrossRefGoogle Scholar
  34. 34.
    Du, X.J., Wu, D., Liu, W., Fang, Y.: Multiclass routing and medium access control for heterogeneous mobile ad hoc networks. IEEE Trans. Veh. Technol. 55(1), 270–277 (2006)CrossRefGoogle Scholar
  35. 35.
    Dhenakaran, D.S., Parvathavarthini, A.: An overview of routing protocols in mobile ad-hoc network. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(2), 1–7 (2013)Google Scholar
  36. 36.
    Rahman, K.C., Hasan, S.F.: Explicit rate-based congestion control for multimedia streaming over mobile ad hoc networks. Int. J. Electr. Comput. Sci. IJECS-IJENS 10(04), 28–40 (2010)Google Scholar
  37. 37.
    Park, S.J., Sivakumar, R.: Congestion-aware topology controls for wireless multi-hop networks. Ad Hoc Netw. 8(3), 295–312 (2010)CrossRefGoogle Scholar
  38. 38.
    Senthil Kumar, T., Narmatha, G.: Video analysis for malpractice detection in classroom examination. In: Advances in Intelligent Systems and Computing Published—Springer—from the Proceedings of International Conference ICSCS 2015, 2016, vol. 397, pp. 135–146 (2016)Google Scholar
  39. 39.
    Baboo, S.S., Narasimhan, B.: Genetic algorithm based congestion aware routing protocol (GA-CARP) for mobile ad hoc networks. Procedia Technol. 4, 177–181 (2012)CrossRefGoogle Scholar
  40. 40.
    Antoniou, P., Pitsillides, A., Blackwell, T., Engelbrecht, A., Michael, L.: Congestion control in wireless sensor networks based on bird flocking behavior. Comput. Netw. 57(5), 1167–1191 (2013)CrossRefGoogle Scholar
  41. 41.
    Sheeja, S., Pujeri, R.V.: Effective congestion avoidance scheme for mobile ad hoc networks. Int. J. Comput. Netw. Inf. Sec. 5(1), 33–38 (2013)Google Scholar
  42. 42.
    Bhatia, G., Kumar, V.: CTCP: a cross-layer information based TCP for MANET. Int. J. Ad Hoc Sens. Ubiquitous Comput. 5(1), 1–4 (2014)Google Scholar
  43. 43.
    Ahmed, A.S., Kumaran, T.S., Syed, S.S.A., Subburam, S.: Cross-layer design approach for power control in mobile ad hoc networks. Egypt. Inform. J. 16(1), 1–7 (2015)CrossRefGoogle Scholar
  44. 44.
    Amel, B., Zoulikha, M.M.: Cross layer design approach for congestion control in MANETs. In: IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT) (2016)Google Scholar
  45. 45.
    Akyildiz, I.F., Lee, W.-Y., Chowdhury, K.R.: CRAHNS: cognitive radio and adhoc networks. Adhoc Netw. 7, 810–836 (2009)Google Scholar
  46. 46.
    Senthil Kumar, T., Ohhm Prakash, K.I.: A queueing model for e-learning system, artificial intelligence and evolutionary algorithms in engineering systems. Adv. Intell. Syst. Comput. 325, 89–95 (2015)Google Scholar
  47. 47.
    Spall, J.C., Hill, S.D., Stark, D.R.: Formal basis for algorithm comparisons in stochastic optimization. In: Proceedings of the American Control Conference, pp. 1545–1550 (2005)Google Scholar
  48. 48.
    Broadie, M., Cicek, D., Zeevi, A.: General bounds and finite-time improvement for the Kiefer-Wolfowitz stochastic approximation algorithm. Oper. Res. 59(5), 1211–1224 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Computer Science and Engineering DepartmentMahendra Engineering CollegeMallasamudramIndia
  2. 2.Electrical and Electronics Engineering DepartmentAlagappa Chettiar College of Engineering and TechnologyKaraikudiIndia

Personalised recommendations