Advertisement

Cluster Computing

, Volume 22, Supplement 5, pp 11477–11487 | Cite as

EEG seizure classification based on exploiting phase space reconstruction and extreme learning

  • S. T. Sadish KumarEmail author
  • N. Kasthuri
Article

Abstract

Epilepsy is the neural condition of the mind activity.Approximately 50 million persons currently live with epilepsy globally. Closely 80% of the Persons with Epilepsy (PWE) living in little- and middle-income countries. Analysis of epilepsy lies on the electroencephalogram (EEG) signals through the various behavior of brain disorders. Localizing the seizure points is generally is tedious and time consuming. Therefore one often to acquire and analyze ten or even hundred hours of recordings. Alternative method is to predict the seizure before they occur and allow the patients to take appropriate care. In this paper, EEG signal is decomposed into coefficients by Wavelet transform. Second, state space reconstrunction method is used to derive phase space trajectory by converting time space signal to phase space. Finally, the classification performance is associated by accrucay and training time with fuzzy system and extreme learning machine (ELM) in neural system. The comparative experimental results using publically available data and real time data are comprised to display the efficiency of the suggested work towards the examination of seizure gestures. The novelty of this paper includes the analysis, detection and discrimination of seizure events.

Keywords

Electroencephalogram (EEG) Discrete wavelet transform (DWT) Phase space reconstruction Extreme learning machine (ELM) Single-hidden layer feedforward neural networks (SLFN’s) 

References

  1. 1.
    Giannakakis, G., Sakkalis, V., Pediaditis, M., Tsiknakis, M.: Methods for Seizure Detection and Prediction: An Overview. Springer, New York (2014)Google Scholar
  2. 2.
    Kamini, V., Ravi, V.: Chaotic time series analysis with neural networks to forecast cash demand in ATMs, IEEE 978-1-4799-3972-5/142014Google Scholar
  3. 3.
    Rodriguez-Bermudez, G., Garcia-Laencina, P.J.: Analysis of EEG signals using nonlinear dynamics and chaos: a review. Appl. Math. Inf. Sci. 9(5), 2309–2321 (2015)MathSciNetGoogle Scholar
  4. 4.
    Alotaiby, T.N., Alshebeili, S.A., Alshawi, T., Ahmad, I., Alotaiby, F.E., et al.: EEG seizure detection and prediction algorithms: a survey. EURASIP J. Adv. Signal Process. 2014, 183 (2014)CrossRefGoogle Scholar
  5. 5.
    Damasevicius, R., Martisius, I., Jusas, V., Birvinskas, D.: Fractional delay time embedding of eegsignals into high dimensional phase space. Elektronika IR. Elektrotechnika 20, 8 (2014). ISSN 1392-1215Google Scholar
  6. 6.
    Athitsos, V., Papapetrou, P., Potamias, M., Kollios, G., Gunopulos, D.: Approximate embedding-based subsequence matching of time series. In: Proceedings of International Conference on Management of data (SIGMOD 2008), ACM, New York, USA pp. 365–378 (2008)Google Scholar
  7. 7.
    Anderson, C., Forney, E., Hains, D., Natarajan, A.: Reliable identification of mental tasksusing time-embedded EEG and sequential evidence accumulation. J. Neural Eng. 8 (2011)Google Scholar
  8. 8.
    Jianbo, G., Jing, H.: Fast monitoring of epileptic seizures using recurrence time statistics of electroencephalography. Front. Comput. Neurosci. 7, 122 (2013)Google Scholar
  9. 9.
    Kumar, S., Kasthuri, N.: A probabilistic model for epileptic seizure detection in EEG signal using time frequency analysis and statistical pattern. Aust. J. Basic Appl. Sci. 7(12), 174–179 (2013)Google Scholar
  10. 10.
    Kumar, S.T.S., Kasthuri, N.: Determination of epileptic disorder with discrete wavelet transforms and neural network classifier. J. Comput. Sci. 10, 66–72 (2014)CrossRefGoogle Scholar
  11. 11.
    Kumar, S.T.S., Kasthuri, N.: A neuro fuzzy system based epileptic seizure detection in EEG signal processing using multi user profile analysis model. Int. J. Appl. Eng. Res. 9(22), 14105–14120 (2014)Google Scholar
  12. 12.
    Thangavelu, S.K., Kasthuri, N., Sundaram, V., Aravind, N., Bilakanti, N.: A stand-alone EEG monitoring system for remote diagnosis., Telemed. e-Health. 22(4), 530–5627 (2016).  https://doi.org/10.1089/tmj.2015.0046
  13. 13.
    Yuan, Y., Li, Y., Mandic, D.P.: A comparison analysis of embedding dimensions between normal and epileptic EEG time series. J. Physiol. Sci. 58(4), 239–247 (2008)CrossRefGoogle Scholar
  14. 14.
    Lee, S.H.: Detection of normal and epileptic seizure EEG signals using a fuzzy neural network. In: Third International Conference on IT and Intelligent Systems (ICITIS’2013) 25–26 Dec 2013, Bangkok (Thailand)Google Scholar
  15. 15.
    Huang, G.B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of IEEE International Joint Conference on Neural Networks 2, pp. 985-990, (Budapest, Hungary) (2004)Google Scholar
  16. 16.
    Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 58, 489–501 (2006)CrossRefGoogle Scholar
  17. 17.
    Huang, G.-B.: An insight into extreme learning machines: random neurons random featuresand kernels. Cogn. Comput. 6(3), 90–376 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. B. 42(2), 29–513 (2012)Google Scholar
  19. 19.
    Bartlett, P.L.: The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 44(2), 525–536 (1998)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Andrzejak, R.G., Lehnertz, K., Rieke, C., Mormann, F., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E. 64, 061907Google Scholar
  21. 21.
    Feltane, A., Bartels, G.B.F., Gaitanis, J., Boudria, Y., Besio, W.: Human seizure detection using quadratic renyi entropy. In: 6th Annual International IEEE EMBS Conference on Neural Engineering, San Diego, California, 6–8 November 2013Google Scholar
  22. 22.
    Vivas, E.L.A., Garcıa-Gonz’alez, A., Figueroa, I., Fuentes, R.Q.: Discrete wavelet transform and ANFIS classifier for brain-machine interface based on EEG. In: The 6th International Conference on Human System Interaction (HSI), IEEE, (pp. 137–144). Sopot, Poland, June 06-08 2013Google Scholar
  23. 23.
    Zhou, J., Schalkoff, R.J., Dean, B.C., Jonathan J., Halford J.J.: A study of morphology-based wavelet features and multiple-wavelet strategy for EEG signal classification: results and selected statistical analysis. In: 35th Annual International Conference of the IEEE EMBS Osaka, Japan, 3–7 July 2013Google Scholar
  24. 24.
    Nolte, D.D.: The tangled tale of phase space. Phys. Today. 63(4), 33–38 (2010)CrossRefGoogle Scholar
  25. 25.
    Huffaker, R.: Phase Space Reconstruction from Time Series Data: Where History Meets Theory. Food and Resource Economics Department, University of Florida, USAGoogle Scholar
  26. 26.
    Kennel, M.B., Brown, R., Abarbanel, H.D.: Determining embedded dimension for phase-space reconstruction using a geometrical construction. Am. Phys. Soc. 45(6), 3403 (1992)Google Scholar
  27. 27.
    Yin, L., He, Y., Dong, X., Lu, Z.: Prediction algorithm of RBF neural network filtering model based on phase space reconstruction. J. Comput. 8(6), 1449–155 (2013)Google Scholar
  28. 28.
    Sang-Hong, L.: Detection of normal and epileptic seizure EEG signals using a fuzzy neural network. In: Third International Conference on IT and Intelligent Systems (ICITIS’2013) 25–26 Dec 2013, Bangkok (2013)Google Scholar
  29. 29.
    Baum, E.B.: On the capabilities of multilayer perceptrons. J. Complexity 4, 193–215 (1998)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)CrossRefGoogle Scholar
  31. 31.
    Liang, N.Y., Saratchandran, P., Huang, G.B., Sundararajan, N.: Classification of mental tasks from EEG signals using extreme learning machine. Int. J. Neural Syst. 16(1), 29–38 (2006)CrossRefGoogle Scholar
  32. 32.
    James, C.J., Jones, R.D., Bones, P.J., Carroll, G.J.: Spatial analysis of multi-channel EEG recordings through a fuzzy-rule based system in the detection of epileptiform events. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 20 (4), pp. 2175–2178 (1998)Google Scholar
  33. 33.
    Varatharajan, R., Manogaran, G., Priyan, M.K., Sundarasekar, R.: Visual analysis of geoWearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Multimed. Tools Appl., 1–21 (2017)Google Scholar
  34. 34.
    Varatharajan, R., Manogaran, G., Priyan, M.K., Sundarasekar, R.: Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Clust. Comput. 1–10 (2017)Google Scholar
  35. 35.
    Sharma, R., Pachori, R.B.: Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst. Appl. 42, 1106–1117 (2015)CrossRefGoogle Scholar
  36. 36.
    Beghi, E., Berg, A., Carpio, A., Forsgren, L., Hesdorffer, D., Hauser, W., et al.: Comment on epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ILAE) and the international bureau for 1457 epilepsy (IBE). Epilepsia 46(10), 1698–1699 (2005)CrossRefGoogle Scholar
  37. 37.
    Aarabi, A., Grebe, R., Wallois, F.: A multistage knowledge-based system for EEG seizure detection in newborn infants. Clin. Neurophysiol. 118(12), 2781–2797 (2007)CrossRefGoogle Scholar
  38. 38.
    Han, J.S., Kim, G.J.: A method of unsupervised machine learning based on self-organizing map for BCI. Clust. Comput. 19(2), 979–985 (2016)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Kuang, Y., Wu, Q., Shao, J., et al.: Extreme learning machine classification method for lower limb movement recognition. Clust. Comput. (2017).  https://doi.org/10.1007/s10586-017-0985-2

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNandha Engineering CollegePerunduraiIndia
  2. 2.Department of Electronics and Communication EngineeringKongu Engineering CollegePerunduraiIndia

Personalised recommendations