Cluster Computing

, Volume 22, Supplement 5, pp 11319–11327 | Cite as

Mitigation of mutual exclusion problem in 5G new radio standards by token and non token based algorithms

  • M. SaravananEmail author
  • R. Kalidoss
  • B. Partibane
  • R. Karthipan


The 5G new radio (NR) standards find application in the area of augmented reality, connecting massive internet of things devices and using mission critical applications with sub millisecond latency. A large volume of spectrum needs allocation to NR standards for realizing benefits. But this is not possible due to regulatory constraints. This creates a space for developing a new algorithm in spectrum sharing for the 5G NR standards. Conventional spectrum methods are affected by mutual exclusion issues. This paper discusses token-based and non-token based spectrum sharing methods which, it is believed, can help solving this problem. The results show that proposed techniques can efficiently mitigate the mutual exclusion problem seen in 5G NR standards.


  1. 1.
    IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements—Part 19: TV White Space coexistence methods, IEEE Std 802.19.1 (2014)Google Scholar
  2. 2.
    Deaton, J., Benonis, M., DaSilva, L., Irwin, R.: Supporting dynamic spectrum access in heterogeneous LTE+ networks. In: Proceedings of the 2012 IEEE International Symposium on Dynamic Spectrum Access Networks (DYSPAN), pp. 305–316 (2012)Google Scholar
  3. 3.
    Chen, X., Huang, J.: Database assisted distributed spectrum sharing. IEEE J. Sel. Areas Commun. 31(11), 2349–2361 (2013)CrossRefGoogle Scholar
  4. 4.
    IEEE standard for information technology—telecommunications and information exchange between systems–local and metropolitan area networks—specific requirements Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 10: Mesh networking, IEEE Std 802.11s-2011 (Amendment to IEEE Std 802.11 –2007 as amended by IEEE 802.11k-2008, IEEE 802.11r-2008, IEEE 802.11y-2008, IEEE 802.11w-2009, IEEE 802.11n-2009, IEEE 802.11p-2010, IEEE 802.11z-2010, IEEE 802.11v-2011, and IEEE 802.11u-2011) (2011)Google Scholar
  5. 5.
    Raychaudhuri, D., Jing, X.: A spectrum etiquette protocol for efficient coordination of radio devices in unlicensed bands. In: Proceedings of the Fourteenth IEEE on Personal, Indoor and Mobile Radio Communications (PIMRC 2003) 1, 172–176 (2003)Google Scholar
  6. 6.
    Jing, X., Raychaudhuri, D.: Global control plane architecture for cognitive radio networks. In: Proceedings of the 2007 IEEE International Conference on Communications (ICC 07), pp. 6466–6470 (2007)Google Scholar
  7. 7.
    Kang, X., Liang, Y.-C., Garg, H.K.: Distributed power control for spectrum—sharing femtocell networks using Stackelberg game. In: Proceedings of the 2011 IEEE International Conference on Communications (ICC), pp. 1–5 (2011)Google Scholar
  8. 8.
    Jia, J., Zhang, Q.: A non-cooperative power control game for secondary spectrum sharing. In: Proceedings of the 2011 IEEE International Conference on Communications (ICC 2007, 2007, pp. 5933–5938,
  9. 9.
    Li, X., Qian, L., Kataria, D.: Downlink power control in co-channel macrocell femtocell overlay. In: Proceedings of the Forty-third Annual Conference on Information Sciences and Systems (CISS 20 09), pp. 383–388 (2009)Google Scholar
  10. 10.
    Jorswieck, E., Badia, L., Fahldieck, T., Karipidis, E., Luo, J.: Spectrum sharing improves the network efficiency for cellular operators. IEEE Commun. Mag. 52(3), 129–136 (2014)CrossRefGoogle Scholar
  11. 11.
    Stolyar, A., Viswanathan, H.: Self-organizing dynamic fractional frequency reuse in OFDMA systems. In: Proceedings of the Twenty-seventh IEEE Conference on Computer Communications (INFOCOM 2008) (2008)Google Scholar
  12. 12.
    Novlan, T., Ganti, R., Ghosh, A., Andrews, J.: Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Trans. Wirel. Commun. 10(12), 4294–4305 (2011)CrossRefGoogle Scholar
  13. 13.
    Kalidoss, R., Bhagyaveni, M.A., Vishvaksenan, K.S.: A location-based duplex scheme for cost effective rural broadband connectivity using IEEE 802.22 cognitive radio based wireless regional area networks. Fluct. Noise Lett. 13, 4 (2014)CrossRefGoogle Scholar
  14. 14.
    Novlan, T., Andrews, J., Sohn, I., Ganti, R., Ghosh, A.: Comparison of fractional frequency reuse approaches in the OFDMA cellular downlink. In: Proceedings of the 2010 IEEE on Global Telecommunications Conference (GLOBECOM 2010), pp. 1–5 (2010)Google Scholar
  15. 15.
    Chen, X., Huang, J.: Distributed spectrum access with spatial reuse. Sel. Areas Commun. IEEE J. 31(3), 593–603 (2013)CrossRefGoogle Scholar
  16. 16.
    Kasbekar, G.S., Sarkar, S.: Spectrum pricing games with bandwidth uncertainty and spatial reuse in cognitive radio networks. In: Proceedings of the Eleventh ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc ‘00), ACM, New York, NY, USA, pp. 251–260 (2010)Google Scholar
  17. 17.
    Chang, C.-Y., Chen, Y.-C., Hung, L.-L., Chang, S.-W.: A novel multi-channel MAC protocol with directional antenna for enhancing spatial reuse and bandwidth utilization in WLANs. J. Parallel Distrib. Comput. 69(10), 824–834 (2009)CrossRefGoogle Scholar
  18. 18.
    Zhao, G., Ma, J., Li, G., Wu, T., Kwon, Y., Soong, A., Yang, C.: Spatial spectrum holes for cognitive radio with relay-assisted directional transmission. IEEE Trans. Wirel. Commun. 8(10), 5270–5279 (2009)CrossRefGoogle Scholar
  19. 19.
    Tsertou, A., Laurenson, D.: Revisiting the hidden terminal problem in a CSMA/CA wireless network. IEEE Trans. Mob. Comput. 7(7), 817–831 (2008)CrossRefGoogle Scholar
  20. 20.
    Mazzenga, F., Petracca, M., Pomposini, R., Vatalaro, F., Giuliano, R.: Algorithms for dynamic frequency selection for femto-cells of different operators. In: Proceedings of the Twenty-first IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 1550–1555 (2010)Google Scholar
  21. 21.
    Yau, K.-L., Komisarczuk, P., Teal, P.: A context-aware and intelligent dynamic channel selection scheme for cognitive radio networks. In: Proceedings of the Fourth International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM ‘09), pp. 1–6 (2009)Google Scholar
  22. 22.
    Popovski, P., Yomo, H., Prasad, R.: Dynamic adaptive frequency hopping for mutually interfering wireless personal area networks. IEEE Trans. Mob. Comput. 5(8), 991–1003 (2006)CrossRefGoogle Scholar
  23. 23.
    Golmie, N., Rebala, O., Chevrollier, N.: Bluetooth adaptive frequency hopping and scheduling. In: Proceedings of the IEEE Military Communications Conference (MILCOM ‘03), 2, 1138–1142 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • M. Saravanan
    • 1
    Email author
  • R. Kalidoss
    • 2
  • B. Partibane
    • 2
  • R. Karthipan
    • 3
  1. 1.Anand Institute of Higher TechnologyChennaiIndia
  2. 2.SSN College of EngineeringChennaiIndia
  3. 3.V V College of EngineeringTirunelveliIndia

Personalised recommendations