Advertisement

Cluster Computing

, Volume 22, Supplement 2, pp 2599–2610 | Cite as

Universal secure error-correcting (SEC) schemes for network coding via McEliece cryptosystem based on QC-LDPC codes

  • Guangzhi ZhangEmail author
  • Shaobin Cai
Article

Abstract

The McEliece cryptosystem based on quasi-cyclic low-density parity check (QC-LDPC) codes is presented to offer both security and error-correction simultaneously in the determined network coding system. The characteristics of the cryptosystem make it does not need to reduce information rate additionally to offer security. The messages u is encoded into x with QC-LDPC. x is transmitted through a network where a network coding error-correcting scheme is performed. \(\rho \) links are observed by the adversary and t errors occur in the network. The characteristic of MDS code make the errors cannot be spread, therefore, the corrupted packets which occur in t links will cause at most t errors in the received messages in the sink. As long as the number of errors occuring in the intermediate links will not exceed the minimum distance of QC-LDPC codes, the hybrid scheme can perform error-correcting and security simultaneously. The information rate reaches \({\mathrm{n}} - 2t\) instead of \({\mathrm{n}} - \mu - 2t\) where n is the max-flow min-cut.

Keywords

McEliece cryptosystem QC-LDPC codes Security Error-correcting Network coding 

Notes

Acknowledgements

This work is supported by the fundamental research funds for Heilongjiang provincial universities (the study on error spreading depression in network coding), Suihua technology office program (SHKJ2015-015, SHKJ2015-014 ), National Science Foundation of China (61571150), Education Office of Heilongjiang Province Science and Technology Program (2016-KYYWF-0937), Suihua University Program (K1502003).

References

  1. 1.
    Talooki, V.N., Bassoli, R., Lucani, D.E., Rodriguez, J., Fitzek, F.H.P., Marques, H., Tafazolli, R.: Security concerns and countermeasures in network coding based communication systems: a survey. Comput. Netw. 83, 422–445 (2015)Google Scholar
  2. 2.
    Yu, Z., Wei, Y., Ramkumar, B., Guan, Y.: An efficient scheme for securing XOR network coding against pollution attacks. In: INFOCOM, pp. 406–414 (2009)Google Scholar
  3. 3.
    Gkantsidis, C., Rodriguez, P.R.: Cooperative security for network coding file distribution. In: INFOCOM 2006. IEEE International Conference on Computer Communications. Proceedings, pp. 1–13 (2006)Google Scholar
  4. 4.
    Zhao, K., Chu, X., Wang, M., Jiang, Y.: Speeding up homomorpic hashing using gpus. In: IEEE International Conference on Communications, pp. 856–860 (2009)Google Scholar
  5. 5.
    Islam, M.S., Kim, J.M.: Gpu-based fast error recovery for high speed data communication in media technology. Clust. Comput. 18(1), 93–101 (2015)Google Scholar
  6. 6.
    Jiang, H., Chen, Y., Qiao, Z., Weng, T.H., Li, K.C.: Scaling up mapreduce-based big data processing on multi-gpu systems. Clust. Comput. 18(1), 369–383 (2015)Google Scholar
  7. 7.
    Wang, Q., Long, V., Nahrstedt, K., Khurana, H.: Mis: malicious nodes identification scheme in network-coding-based peer-to-peer streaming. In: Conference on Information Communications, pp. 296–300 (2010)Google Scholar
  8. 8.
    Yang, S., Yeung, R.W., Chi, K.N.: Refined coding bounds and code constructions for coherent network error correction. IEEE Trans. Inf. Theory 57(3), 1409–1424 (2009)Google Scholar
  9. 9.
    Xuan, G., Fu, F.W., Zhang, Z.: Construction of network error correction codes in packet networks. In: International Symposium on NETWORKING Coding, pp. 1–6 (2011)Google Scholar
  10. 10.
    Matsumoto, R.: Construction algorithm for network error-correcting codes attaining the singleton bound. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90–A(9), 1729–1735 (2007)Google Scholar
  11. 11.
    Yang, S., Yeung, R.W.: Characterizations of network error correction/detection and erasure correction. Proc Netcod (2007)Google Scholar
  12. 12.
    Zhang, Z.: Linear network error correction codes in packet networks. IEEE Trans. Inf. Theory 54(1), 209–218 (2008)Google Scholar
  13. 13.
    Jaggi, S., Langberg, M., Katti, S., Ho, T., Katabi, D., Medard, M., Effros, M.: Resilient network coding in the presence of byzantine adversaries. IEEE Trans. Inf. Theory 54(6), 2596–2603 (2008)Google Scholar
  14. 14.
    Silva, D., Kschischang, F.R., Koetter, R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008)Google Scholar
  15. 15.
    Silva, D., Kschischang, F.R.: Using rank-metric codes for error correction in random network coding. In: IEEE International Symposium on Information Theory, pp. 796–800 (2007)Google Scholar
  16. 16.
    Siavoshani, M.J., Fragouli, C., Diggavi, S.N.: Subspace properties of network coding and their applications. IEEE Trans. Inf. Theory 58(5), 2599–2619 (2012)Google Scholar
  17. 17.
    Silva, D., Kschischang, F.R.: Security for wiretap networks via rank-metric codes. In: IEEE International Symposium on Information Theory, pp. 176–180 (2007)Google Scholar
  18. 18.
    Koetter, R., Kschischang, F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2007)Google Scholar
  19. 19.
    Ngai, C.K., Yang, S.: Deterministic secure error-correcting (sec) network codes. In: The Workshop on Network Coding, pp. 96–101 (2009)Google Scholar
  20. 20.
    Silva, D., Kschischang, F.R.: Universal secure error-correcting schemes for network coding. In: IEEE International Symposium on Information Theory Proceedings, pp. 2428–2432 (2010)Google Scholar
  21. 21.
    Silva, D., Kschischang, F.R.: Universal secure network coding via rank-metric codes. IEEE Trans. Inf. Theory 57(2), 1124–1135 (2011)Google Scholar
  22. 22.
    Mceliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep Space Network Progress Report, pp. 114–116 (1978)Google Scholar
  23. 23.
    Baldi, M., Chiaraluce, F.: Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes. In: IEEE International Symposium on Information Theory, pp. 2591–2595 (2007)Google Scholar
  24. 24.
    Sanders, P., Egner, S., Tolhuizen, L.: Polynomial time algorithms for network information flow. ACM Symposium on Parallel Algorithms and Architectures, pp. 286–294 (2003)Google Scholar
  25. 25.
    Yu, Z., Wei, Y., Ramkumar, B., Guan, Y.: An efficient signature-based scheme for securing network coding against pollution attacks. In: INFOCOM 2008. the Conference on Computer Communications. IEEE, pp. 1409–1417 (2008)Google Scholar
  26. 26.
    Venturelli, R.B., Silva, D.: An evaluation of erasure decoding algorithms for gabidulin codes. In: Telecommunications Symposium, pp. 1–5 (2014)Google Scholar
  27. 27.
    Rashwan, H., Gabidulin, E.M., Honary, B.: Security of the GPT cryptosystem and its applications to cryptography. Secur. Commun. Netw. 4(8), 937–946 (2011)Google Scholar
  28. 28.
    Wang, L., Yang, Y., Zhao, W.: Network coding-based multipath routing for energy efficiency in wireless sensor networks. Eurasip J. Wirel. Commun. Netw. 2012(1), 115 (2012)Google Scholar
  29. 29.
    Chou, P.A., Wu, Y.: Practical network coding. In: Conference on Information Communications (2003)Google Scholar
  30. 30.
    Guo, Z., Wang, B., Xie, P., Zeng, W., Cui, J.H.: Efficient error recovery with network coding in underwater sensor networks. Ad Hoc Netw. 7(4), 791–802 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Computer Science DepartmentHarbin Engineering UniversityHarbinChina
  2. 2.Suihua UniversitySuihuaChina

Personalised recommendations