Advertisement

Cluster Computing

, Volume 21, Issue 2, pp 1395–1410 | Cite as

An accurate resource scheduling system for virtual machines based on CPU load monitoring and assessment

  • Ying LiEmail author
  • Jing Zhang
  • XiaoJun Chen
  • JunHuai Li
  • JuLan Ding
Article
  • 205 Downloads

Abstract

An accurate resource scheduling system (RSS) for virtual machines based on CPU monitoring and load assessment is presented to solve the shortcoming of resource scheduling in cloud computing systems. A new architecture is designed to improve Credit scheduler, including three core components: CPU load monitoring component (CLMA), CPU load assessment component (CLAA), and the resource adjustment component (RSA). On the basis of the prototype design, we make an evaluation between Credit scheduler and our system with a typical example in Xen platform. The experimental results show that the proposed system could satisfy the personalized resources requirements from users with higher tasks resource utilization and lower system resource utilization when compared with Credit scheduler. RSS has a strong sensitivity to meet the requirements of cloud computing systems, since it can accelerate the executions of applications via dynamic resource scheduling.

Keywords

Cloud computing Virtualization Load monitoring Load assessment Resource adjustment Resource scheduling 

References

  1. 1.
    Ian, F., Yong, Zh, Ioan, R., Shiyong, L.: Cloud Computing and Grid Computing 360-degree compared. In: Grid Computing Environments Workshop Gce, vol. 5, pp. 1–10 (2008)Google Scholar
  2. 2.
    Jin, H.: Virtualization technology for computing system. In: High Performance Computing and Communications (2008).  https://doi.org/10.1109/HPCC.2008.167
  3. 3.
    Julia, C., Joseph, S.N.: New hardness results for congestion minimization and machine scheduling. J. ACM 53(5), 707–721 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dirgo, O., Alan, L.C., Scott, R.: Scheduling I/O in virtual machine monitors. In: International Conference on Virtual Execution Environments, pp. 1–10 (2008).  https://doi.org/10.1145/1346256.1346258
  5. 5.
    McDermott, J., Kirby, J., Montrose, B., Johnson, T., Kang, M.: Re-engineering Xen internals for higher-assurance security. Form. Secur. Tech. Rep. 13(1), 17–24 (2008)CrossRefGoogle Scholar
  6. 6.
    Gabor, K., Gabor, T., Peter, K., Zsolt, N.: An approach for virtual appliance distribution for service deployment. Future Gener. Comput. Syst. 27(3), 280–289 (2011)CrossRefGoogle Scholar
  7. 7.
    Mark, S., David, S., Frederic, V., Henri, C.: Resource allocation using virtual clusters. In: The 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 260–267 (2009).  https://doi.org/10.1109/CCGRID.2009.23
  8. 8.
    Ian, L., Derek, M., Richard, B., Timothy, R., Paul, B., David, E., Robin, F., Eoin, H.: The design and implementation of an operating system to support distributed multi-media applications. IEEE J. Sel. Areas Commun. 14(7), 1280–1297 (1996)CrossRefGoogle Scholar
  9. 9.
    Kenneth, J.D., David, R.C.: Borrowed-virtual-time (BVT) scheduling: supporting latency-sensitive threads in a general-purpose scheduler. ACM Sigops Oper. Syst. Rev. 34(2), 27–28 (1999)Google Scholar
  10. 10.
    Ludmila, C., Diwaker, G., Amin, V.: Comparison of the three CPU Schedulers in Xen. Acm Sigmetrics Perform. Eval. Rev. 35(2), 42–51 (2007)CrossRefGoogle Scholar
  11. 11.
    Young, C.L., Albert, Y.Z.: Rescheduling for reliable job completion with the support of clouds. Future Gener. Comput. Syst. 26(8), 1192–1199 (2010)CrossRefGoogle Scholar
  12. 12.
    Kinshuk, G., Dan, T., Yongqiang, H., Mendel, R.: Cellular disco: resource management using virtual clusters on shared-memory multiprocessors. Acm Trans. Comput. Syst. 18(3), 229–262 (2000)CrossRefGoogle Scholar
  13. 13.
    Volkmar, U., Joshua, L., Espen, S., Uwe, D.: Towards scalable multiprocessor virtual machines. In: The 3rd Conference on Virtual Machine Research and Technology Symposium, vol. 3, pp. 1–14 (2004)Google Scholar
  14. 14.
    Mendel, R., Tal, G.: Virtual machine monitors: current technology and future trends. Computer 38(5), 39–47 (2005)CrossRefGoogle Scholar
  15. 15.
    Hiroshi, Y., Kenji, K.: Foxy Technique: tricking operating system policies with a virtual machine monitor. In: The 3rd International Conference on Virtual Execution Environments, pp. 55–64 (2007).  https://doi.org/10.1145/1254810.1254818
  16. 16.
    Jonas, P., Christian, S., Claudia, E.: Formal model for virtual machine introspection. ACM Workshop on Virtual Machine Security, pp. 1–10 (2009).  https://doi.org/10.1145/1655148.1655150
  17. 17.
    Fumio, M., Dong, S.K., Jong, S.P.: Towards optimal virtual machine placement and rejuvenation scheduling in a virtualized data center. In: IEEE International Conference on Software Reliability Engineering Workshops, vol. 7(5), pp. 1–3 (2008).  https://doi.org/10.1109/ISSREW.2008.5355515
  18. 18.
    Dongsung, K., Hwanju, K., Myeongjae, J., Euiseong, S., Joonwon, L.: Guest-aware priority-based virtual machine scheduling for highly consolidated server. In: The 14th International Euro-Par Conference on Parallel Processing, vol. 5168, pp. 285–294 (2008).  https://doi.org/10.1007/978-3-540-85451-7_31
  19. 19.
    Cota-Robles, E.C., Flautner, K.: Real-time scheduling of virtual machines. U.S. (2008)Google Scholar
  20. 20.
    Lei, Sh, Deqing, Zh, Hai, J.: Xen Virtualization Technlogy. Huazhong University of Science & Technology Press, Wuhan (2009)Google Scholar
  21. 21.
    Zohar, L., Dimitri, G.G., Baruch, K.: Optimal booking of machines in a virtual job-shop with stochastic processing times to minimize total machine rental and job tardiness costs. Int. J. Prod. Econ. 111(2), 812–821 (2008)CrossRefGoogle Scholar
  22. 22.
    Jinpeng, H., Qin, L., Chunming, H.: Research and design on hypervisor based virtual computing environment. J. Softw. 18(8), 2016–2026 (2007)CrossRefGoogle Scholar
  23. 23.
    Jian, W., Jianling, S., Xinyu, W., Xiaohu, Y., Shenkang, W., Junbo, Ch.: Efficient scheduling algorithm for hard real-time tasks in primary-backup based multiprocessor systems. J. Softw. 20(10), 2629–2637 (2009)Google Scholar
  24. 24.
    Weizhe, Zh, Zhihong, T., Hongli, Zh, Hui, H., Wenmao, L.: Multi-cluster co-allocation scheduling algorithms in virtual computing environment. J. Softw. 18(8), 2027–2037 (2007)CrossRefzbMATHGoogle Scholar
  25. 25.
    Sisu, X., Justin, W., Chengyang, L., Christopher G.: Rt-xen: towards real-time hypervisor scheduling in Xen. In: International Conference on Embedded Software, pp. 39–48 (2011).  https://doi.org/10.1145/2038642.2038651
  26. 26.
    Like, Zh., Song, W., Huahua, S., Hai, J., Xuanhua, Sh.: Virtual machine scheduling for parallel soft real-time applications. In: The 20th IEEE International Symposium on Modelling, pp. 525–534 (2013).  https://doi.org/10.1109/MASCOTS.2013.74
  27. 27.
    Jin, H., Gao, W., Wu, S., Xuanhua, Sh, Xiaoxin, W., Fan, Zh: Optimizing the live migration of virtual machine by CPU scheduling. J. Netw. Comput. Appl. 34, 1088–1096 (2011)CrossRefGoogle Scholar
  28. 28.
    Xiangtong, Q., Jonathan, F.B., Gang, Y.: Disruption management for machine scheduling: the case of SPT schedules. Int. J. Prod. Econ. 103(1), 166–184 (2006)CrossRefGoogle Scholar
  29. 29.
    Rui, W., Dara, M.K., Naganajan, K.: A distributed control framework for performance management of virtualized computing environments. In: The 7th International Conference on Autonomic Computing, pp. 89–98 (2010).  https://doi.org/10.1145/1809049.1809066
  30. 30.
    Dara, K., Jeffrey, O.K., James, E.H., Naganajan, K., Guofeng, J.: Power and performance management of virtualized computing environments via lookahead control. Int. Conf. Automonic Comput. 12(1), 3–12 (2008).  https://doi.org/10.1109/ICAC.2008.31 Google Scholar
  31. 31.
    Rajiv, R., Rodrigo, N.C., Rajkumar B.: Virtual machine provisioning based on analytical performance and QoS in cloud computing environments. In: International Conference on Parallel Processing, pp. 295–304 (2011).  https://doi.org/10.1109/ICPP.2011.17
  32. 32.
    Jim, S., Ravi, N.: Virtual Machines: Versatile Platforms for Systems and Processes. Morgan Kaufmann Publishers Inc., San Francisco (2007)Google Scholar
  33. 33.
    Jin, H., Li, D., Song, W., Like, Zh: Automatic power-aware reconfiguration of processor resource in virtualized clusters. J. Comput. Res. Dev. 48(7), 1123–1133 (2011)Google Scholar
  34. 34.
    Timothy, W., Prashant, S., Arun, V., Mazin, Y.: Black-box and gray-box strategies for virtual machine migration. In: The 4th USENIX Conference on Networked Systems Design & Implementation, pp. 229–242 (2007).  https://doi.org/10.1109/ICAC.2006.1662416
  35. 35.
    Hwanju, K., Hyeontaek, L., Jinkyu, J., Heeseung, J., Joonwon, L.: Task-aware virtual machine scheduling for I/O performance. In: International Conference on Virtual Execution Environments, pp. 101–110 (2009).  https://doi.org/10.1145/1508293.1508308
  36. 36.
    Sriram, G., Arjun, R.N., Amitayu, D., Bhuvan, U., Anand, S.: Xen and co.: communication-aware CPU scheduling for consolidated Xen-based hosting platforms. In: The 3rd International Conference on Virtual Execution Environments, pp. 126–136 (2007).  https://doi.org/10.1145/1254810.1254828
  37. 37.
    David, C.: The Definitive Guide to the Xen Hypervisor. Pearson Education Inc., Upper Saddle River (2008)Google Scholar
  38. 38.
    Pan, J.N.: A study of multivariate pre-control charts. Int. J. Prod. Econ. 105(1), 160–170 (2007)CrossRefGoogle Scholar
  39. 39.
    Ramadgel, P.J., Wonham, W.M.: Supervisory control of discrete event processes. In: Feedback Control of Linear and Nonlinear Systems, pp. 202–214 (1982).  https://doi.org/10.1007/BFb0006830
  40. 40.
    Stanescu, A.M., Dumitrache, I., Curaj, A., Caramihai, S.I., Chircor, M.: Supervisory control and data acquisition for virtual enterprise. Int. J. Prod. Res. 40(15), 3545–3559 (2002)CrossRefGoogle Scholar
  41. 41.
    Lai, K.C., Smiley, W.C., Fred, S.: A new measure of process capability index \(\text{ C }_{pm}\). J. Qual. Technol. 20(3), 162–175 (1988)CrossRefGoogle Scholar
  42. 42.
    Maria, T.C., Aysun, S., Jose, M.S.: A new approach for measurement of the efficiency of \(\text{ C }_{pm}\) and \(\text{ C }_{pmk}\) control charts. Int. J. Qual. Res. 7(4), 605–622 (2013)Google Scholar
  43. 43.
    Ledolter, J., Swersey, A.: An evaluation of pre-control. J. Qual. Technol. 29(2), 163–171 (1997)CrossRefGoogle Scholar
  44. 44.
    Pearn, W.L., Chien-Wei, W.: Production quality and yield assurance for processes with multiple independent characteristics. Eur. J. Oper. Res. 173(2), 637–647 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    George, D., Coste, E.C., Luminita, R., Sebastian, M.R.: The role of virtual networks in virtual enterprise. J. Mech. Eng. 52(7), 526–531 (2006)Google Scholar
  46. 46.
    Mohamed, S.C., Habib, C., Belaı, A.: Quality control system design through the goal programming model and the satisfaction functions. Eur. J. Oper. Res. 186(3), 1084–1093 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Automation and Information EngineeringXi’an University of TechnologyXi’anChina
  2. 2.School of Computer Science and EngineeringXi’an University of TechnologyXi’anChina

Personalised recommendations