Advertisement

Cluster Computing

, Volume 22, Supplement 1, pp 847–858 | Cite as

Semantic query graph based SPARQL generation from natural language questions

  • Shengli SongEmail author
  • Wen Huang
  • Yulong Sun
Article
  • 341 Downloads

Abstract

In order to precisely represent natural language questions (NLQs) in question answering system (QAS) and provide a more naturally interactive mode, we require SPARQL, a formalized query patterns, instead of search expression to express the user’s semantic query intention. However, how to generate and evaluate SPARQL query from NLQ is a mostly open research question. In this paper, we propose a framework that can help users translating NLQ into well-formed queries for knowledge based systems. We define a new graph structure, semantic query graph, and vocabulary to match all kinds of complex and compound questions without using domain ontology. Through query expansion and semantic query graph generation, the framework resembles subgraphs of the knowledge base and can be directly mapped to a logical form. Extensive experiments over NLQ in real RDF QASs verify the feasibility and efficiency of semantic query graph and our proposed framework with average F-measure of 0.825.

Keywords

Query generation Semantic query graph SPARQL Natural language question 

References

  1. 1.
    Berant, J., Chou, A., Frostig, R., et al.: Semantic parsing on freebase from question-answer pairs. EMNLP 2(5), 6 (2013)Google Scholar
  2. 2.
    Cabrio, E., Cojan, J., Gandon, F, et al.: Querying multilingual DBpedia with QAKiS. In: Extended Semantic Web Conference. Springer, Berlin, pp. 194–198 (2013)Google Scholar
  3. 3.
    Cai, Q., Yates, A.: Large-scale semantic parsing via schema matching and lexicon extension. ACL 1, 423–433 (2003)Google Scholar
  4. 4.
    Dubey, M., Dasgupta, S., Sharma, A., et al.: Asknow: a framework for natural language query formalization in SPARQL. In: International Semantic Web Conference, pp. 300–316. Springer, Cham (2016)Google Scholar
  5. 5.
    Faleiro, J.M., Abadi, D.J.: FIT: A Distributed Database Performance Tradeoff. IEEE Data Eng. Bull. 38(1), 10–17 (2015)Google Scholar
  6. 6.
    Ferré, S.: Sparklis: an expressive query builder for SPARQL endpoints with guidance in natural language. Semant. Web 8(3), 405–418 (2017)CrossRefGoogle Scholar
  7. 7.
    Hasan, A., Hammoud, M., Nouri, R., et al.: DREAM in action: a distributed and adaptive RDF system on the cloud. In: Proceedings of the 25th International Conference Companion on World Wide Web. International World Wide Web Conferences Steering Committee, pp. 191–194 (2016)Google Scholar
  8. 8.
    Horridge, M., Musen, M.: Snap-SPARQL: a java framework for working with SPARQL and OWL. In: International Experiences and Directions Workshop on OWL, pp. 154–165. Springer, Cham (2015)Google Scholar
  9. 9.
    Lehmann, J., Bühmann, L.: Autosparql: let users query your knowledge base. Semanti. Web Res. Appl. 63–79 (2011)Google Scholar
  10. 10.
    Lopez, V., Tommasi, P., Kotoulas, S., et al.: Queriodali: question answering over dynamic and linked knowledge graphs. In: International Semantic Web Conference, pp. 363–382. Springer, Berlin (2016)Google Scholar
  11. 11.
    Marginean, A.: Question answering over biomedical linked data with grammatical framework. Semant. Web 8(4), 565–580 (2017)CrossRefGoogle Scholar
  12. 12.
    Matteis, L., Hogan, A., Navigli, R.: Keyword-based navigation and search over the linked data web.In: LDOW@ WWW (2015)Google Scholar
  13. 13.
    Mazzeo, G.M., Zaniolo, C.: Answering controlled natural language questions on RDF knowledge bases. In: EDBT, pp. 608–611 (2016)Google Scholar
  14. 14.
    Nakashole, N., Weikum, G., Suchanek, F.: PATTY: a taxonomy of relational patterns with semantic types. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 1135–1145 . Association for Computational Linguistics (2012)Google Scholar
  15. 15.
    Paredes-Valverde, M.A., Rodríguez-García, M.Á., Ruiz-Martínez, A., et al.: ONLI: an ontology-based system for querying DBpedia using natural language paradigm. Expert Syst. Appl. 42(12), 5163–5176 (2015)CrossRefGoogle Scholar
  16. 16.
    Pradel, C., , Haemmerlé, O., Hernandez, N.: Natural language query interpretation into sparql using patterns. In: Proceedings of the Fourth International Conference on Consuming Linked Data, vol. 1034, pp. 13–24. CEUR-WS.org (2013)Google Scholar
  17. 17.
    Qiang, L.: Painting semantic retrieval algorithm research based on ontology. In: Proceedings of the 2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 621–624. IEEE (2015)Google Scholar
  18. 18.
    Sander, M., Waltinger, U., Roshchin, M., Runkler, T.: Ontology-based translation of natural language queries to SPARQL. In: Proceedings of the Natural Language Access to Big Data. AAAI 2014 Fall Symposium. Citeseer (2014)Google Scholar
  19. 19.
    Shekarpour, S., Marx, E., Ngonga Ngomo, A.-C., Soren, A.: Semantic Interpretation Of User Queries For Question Answering On Interlinked Data. Elsevier-Web Semantics (2015)Google Scholar
  20. 20.
    Song, D., Schilder, F., Smiley, C., et al.: Natural language question answering and analytics for diverse and interlinked datasets. In: HLT-NAACL, pp. 101–105 (2015)Google Scholar
  21. 21.
    Song, D., Schilder, F., Smiley, C., et al.: TR discover: a natural language interface for querying and analyzing interlinked datasets. In: International Semantic Web Conference, pp. 21–37. Springer, Cham (2015)Google Scholar
  22. 22.
    Tatu, M., Balakrishna, M., Werner, S., et al.: Automatic extraction of actionable knowledge. In: Proceedings of the 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), pp. 396–399. IEEE (2016)Google Scholar
  23. 23.
    Tatu, M., Balakrishna, M., Werner, S., et al.: A semantic question answering framework for large data sets. Open J. Semant. Web (OJSW) 3(1), 16–31 (2016)Google Scholar
  24. 24.
    Unger, C., Forascu, C., Lopez, V., et al.: Question answering over linked data (QALD-4). Working Notes for CLEF 2014 Conference (2014)Google Scholar
  25. 25.
    Xu, K., Zhang, S., Feng, Y., et al.: Answering natural language questions via phrasal semantic parsing. In: Natural Language Processing and Chinese Computing, pp. 333–344. Springer, Berlin (2014)Google Scholar
  26. 26.
    Zheng, W., Zou, L., Lian, X., et al.: How to build templates for RDF question/answering: an uncertain graph similarity join approach. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1809–1824. ACM (2015)Google Scholar
  27. 27.
    Zhou, Q., Luo, J.: The study on evaluation method of urban network security in the big data era. Intell. Autom. Soft Comput. (2017).  https://doi.org/10.1080/10798587.2016.1267444
  28. 28.
    Zhou, Q.: Multi-layer affective computing model based on emotional psychology. Electron. Commer. Res. (2017).  https://doi.org/10.1007/s10660-017-9265-8
  29. 29.
    Zhou, Q.: Research on heterogeneous data integration model of group enterprise based on cluster computing. Clust. Comput. 19, 1275–1282 (2016).  https://doi.org/10.1007/s10586-016-0580-y CrossRefGoogle Scholar
  30. 30.
    Zhou, Q., Luo, J.: The service quality evaluation of ecologic economy systems using simulation computing. Comput. Syst. Sci. Eng. 31(6), 453–460 (2016)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Software Engineering InstituteXidian UniversityXi’anChina

Personalised recommendations