Cluster Computing

, Volume 22, Supplement 4, pp 7723–7731 | Cite as

Performance of adaptive MIMO switching for cognitive MC-CDMA system

  • S. LeelaEmail author
  • Kuttathati Srinivasan Vishvaksenan


The future 5G wireless network will be identified by flexibility design, high combination of services, and higher data rate. In this treatise, we present the performance evaluation physical layer design for multi-carrier code-division-multiple-access (MC-CDMA) system for cognitive radio network (CRN) employing link adaptive multiple-input multiple- output (MIMO). CRN in conjunction with MIMO promises to achieve massive amelioration in system bandwidth. We consider link adaption scheme (LAS) which will select modulation scheme and MIMO profile based on channel parameters. CRN is a device in wireless communication which can sense the idle unused spectrum and allocate the spectrum dynamically to base station. We utilize sub-band frequency of CRN for multi-carrier communication and to extract for user-specific spreader in CDMA system. Further, we realize iterative decoder at the receiver to achieve better error-rate performance for CRN based MIMO MC-CDMA system with less signal-to-noise ratio (SNR). Furthermore,We study the performance of adaptive MIMO scheme with CRN defined MC-CDMA for Stanford University Interim channel model specifications. We discern through computer simulations that CRN based MC-CDMA system with adaptive MIMO scheme achieves significant performance enhancement both in error-rate and data rate.


BCJR decoder Code-division multiple-access(CDMA) Maximum likely-hood detection(ML) Minimum-mean-square-error(MMSE) estimation Multi-user detection(MUD) Zero-forcing algorithm(ZF) 


  1. 1.
    Muquet, B., Biglieri, E., Sari, H.: MIMO link adaptation in mobile WiMAX systems. In: IEEE Wireless Communications and Networking Conference (WCNC 2007) China, pp. 1812–1815, 11-15 March 2007Google Scholar
  2. 2.
    Han, C., Doufexi, A., Armour, S., Ng, K.H., McGeehan, J.: Adaptive MIMO OFDMA for future generation cellular systems in a realistic outdoor environment. In: 63rd IEEE Vehicular Technology Conference (VTC 2006-Spring) Australia, pp. 142–146, 7-10 May 2006Google Scholar
  3. 3.
    Karthipan, R., Vishvaksenan, K.S., Kalidoss, R., Krishan, A.: Performance of turbo coded triply-polarized MIMO-CDMA system for downlink communication. J. Comput. Electr. Eng. 56, 182–192 (2016)Google Scholar
  4. 4.
    Mithra, K., Vishvaksenan, K.S.: Performance of coded STBC-IDMA system using polarization diversity for downlink transmission. Cluster Comput. 20(2), 1615–1624 (2017)Google Scholar
  5. 5.
    Xiao, J., Ye, F., Tian, T., Hu, R.Q.: CR enabled TD-LTE within TV white space: system level performance analysis. In: IEEE Global Telecommunications Conference, pp. 1–6, December 2011Google Scholar
  6. 6.
    Kondo, S., Milstein, L.B.: Performance of multicarrier DS CDMA systems. IEEE Trans. Commun. 44(2), 238–246 (1996)Google Scholar
  7. 7.
    AlJerjawi, M.S., Hamouda, W.: Performance analysis of multiuser DS-CDMA in MIMO systems over rayleigh fading channels. IEEE Trans. Veh. Technol. 57(3), 1480–1493 (2008)Google Scholar
  8. 8.
    Yang, L.L., Wang, L.C.: Zero-forcing and minimum mean square error multiuser detection in generalized multicarrier DSCDMA systems for cognitive radio. EURASIP J. Wirel. Commun. Netw. 14(2), 541410 (2008)Google Scholar
  9. 9.
    Zhang, R., Hanzo, L.: Iteratively detected multi-carrier interleave division multiple access. In: International conference MICROC0LL’07, BUDAPEST, Hungary, May 2007Google Scholar
  10. 10.
    Li, W., Gulliver, T.A.: Successive interference cancellation for DSCDMA systems with transmit diversity. EURASIP J. Wirel. Commu. Netw. 1, 46–54 (2004)Google Scholar
  11. 11.
    Attar, A., Reza Nakhai, M., Hamid Aghvami, A.: Cognitive radio transmission based on direct sequence MC-CDMA. IEEE Trans. Wirel. Commun. 7, 1157–1162 (2008)Google Scholar
  12. 12.
    Vishvaksenan, K.S., Vasanth raj, P.T.: Coded downlink multi-user MC-CDMA system using transmitter pre-processing: performance results. IEEE Access, 4:4534-4542 (2016).
  13. 13.
    Nelson, I., Vishvaksenan, K.S., Rajendran, V., Palanimurugan, R.: Mitigating ambient noise and multi-path propagation in under water communication using the DSTTD-OFDM system. J. Comput. Electr. Eng. 53, 409–417 (2016)Google Scholar
  14. 14.
    Maucher, J., Furrer, J., Heise: IEEE Std. 2007, IEEE Standard for WIMAX 802.16, Hannover (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringSastra UniversityKumbakonamIndia
  2. 2.Department of ECESSN College of EngineeringChennaiIndia

Personalised recommendations