Dynamic data-driven learning for self-healing avionics

  • Shigeru Imai
  • Sida Chen
  • Wennan Zhu
  • Carlos A. VarelaEmail author


In sensor-based systems, spatio-temporal data streams are often related in non-trivial ways. For example in avionics, while the airspeed that an aircraft attains in cruise phase depends on the weight it carries, it also depends on many other factors such as engine inputs, angle of attack, and air density. It is therefore a challenge to develop failure models that can help recognize errors in the data, such as an incorrect fuel quantity or an incorrect airspeed. In this paper, we present a highly-declarative programming framework that facilitates the development of self-healing avionics applications, which can detect and recover from data errors. Our programming framework enables specifying expert-created failure models using error signatures, as well as learning failure models from data. To account for unanticipated failure modes, we propose a new dynamic Bayes classifier, that detects outliers and upgrades them to new modes when statistically significant. We evaluate error signatures and our dynamic Bayes classifier for accuracy, response time, and adaptability of error detection. While error signatures can be more accurate and responsive than dynamic Bayesian learning, the latter method adapts better due to its data-driven nature.


Data streaming Spatio-temporal data Declarative programming Linear regression Bayesian statistics 



This research is partially supported by the DDDAS program of the Air Force Office of Scientific Research, Grant No. FA9550-15-1-0214, NSF Grant No. 1462342, and a Yamada Corporation Fellowship. We would like to thank anonymous reviewers for their valuable feedback. We would also like to acknowledge co-authors of previous PILOTS papers: Erik Blasch, Richard Klockowski, Alessandro Galli, Frederick Lee, and Colin Rice.

Supplementary material


  1. 1.
    Akidau, Tyler, Balikov, Alex, Bekiroğlu, Kaya, Chernyak, Slava, Haberman, Josh, Lax, Reuven, McVeety, Sam, Mills, Daniel, Nordstrom, Paul, Whittle, Sam: Millwheel: fault-tolerant stream processing at internet scale. Proceedings of the VLDB Endowment 6(11), 1033–1044 (2013)CrossRefGoogle Scholar
  2. 2.
    Allaire, Douglas., Kordonowy, David., Lecerf, Marc., Mainini, Laura., Willcox, Karen.: Multifidelity DDDAS methods with application to a self-aware aerospace vehicle. In: DDDAS 2014 Workshop at ICCS’14, pages 1182–1192, (June 2014)Google Scholar
  3. 3.
    Anderson Jr., J.D.: Fundamentals of Aerodynamics. Tata McGraw-Hill Education, New York (2010)Google Scholar
  4. 4.
    Biswas, Gautam., Khorasgani, Hamed., Stanje, Gerald., Dubey, Abhishek., Deb, Somnath., Ghoshal, Sudipto.: An application of data driven anomaly identification to spacecraft telemetry data. In: Prognostics and Health Management Conference, (2016)Google Scholar
  5. 5.
    Blasch, Erik P., Lambert, Dale A., Valin, Pierre, Kokar, Mieczyslaw M., Llinas, James, Das, Subrata, Chong, Chee, Shahbazian, Elisa: High level information fusion (hlif): survey of models, issues, and grand challenges. IEEE Aerospace and Electronic Systems Magazine 27(9), 4–20 (2012)CrossRefGoogle Scholar
  6. 6.
    Bureau d’Enquêtes et d’Analyses pour la Sécurité de l’Aviation Civile. Final Report: On the accident on 1st June 2009 to the Airbus A330-203 registered F-GZCP operated by Air France flight AF 447 Rio de Janeiro - ParisGoogle Scholar
  7. 7.
    Chaiken, Ronnie, Jenkins, Bob, Larson, PerÅke, Ramsey, Bill, Shakib, Darren, Weaver, Simon, Zhou, Jingren: SCOPE: Easy and efficient parallel processing of massive data sets. Proc. VLDB Endow. 1(2), 1265–1276 (2008)CrossRefGoogle Scholar
  8. 8.
    Chen, Sida., Imai, Shigeru., Zhu, Wennan., Varela, Carlos A.: Towards learning spatio-temporal data stream relationships for failure detection in avionics. In: Dynamic Data-Driven Application Systems (DDDAS 2016), Hartford, CT, Aug 2016. To appearGoogle Scholar
  9. 9.
    Darema, Frederica.: Dynamic data driven applications systems: A new paradigm for application simulations and measurements. In: Computational Science-ICCS 2004, pages 662–669. Springer, (2004)Google Scholar
  10. 10.
    Das, S., Matthews, BL., Srivastava, Ashok N., Oza, Nikunj C.: Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 47–55, (2010)Google Scholar
  11. 11.
    De Raedt, Luc, Kimmig, Angelika, Toivonen, Hannu: Problog: A probabilistic prolog and its application in link discovery. International Joint Conference on Artificial Intelligence 7, 2462–2467 (2007)Google Scholar
  12. 12.
    Ditzler, Gregory., Hariri, Salim., Akoglu, Ali.: High Performance Machine Learning (HPML) Framework to Support DDDAS Decision Support Systems: Design Overview. In: Foundations and Applications of Self* Systems (FAS* W), 2017 IEEE 2nd International Workshops on, pages 360–362. IEEE, (2017)Google Scholar
  13. 13.
    Fonnesbeck, Christopher J.: PyMC 2.3.6 documentation. Accessed 06-12-(2017)
  14. 14.
    Hwang, Inseok, Kim, Sungwan, Kim, Youdan, Seah, Chze Eng: A survey of fault detection, isolation, and reconfiguration methods. IEEE Transactions on Control Systems Technology 18(3), 636–653 (2010)CrossRefGoogle Scholar
  15. 15.
    Imai, Shigeru., Blasch, Erik., Galli, Alessandro., Zhu, Wennan., Lee, Frederick., Varela, Carlos A.: Airplane flight safety using error-tolerant data stream processing. IEEE Aerospace and Electronics Systems Magazine, 32(4), (2017)Google Scholar
  16. 16.
    Imai, Shigeru., Galli, Alessandro., Varela, Carlos A.: Dynamic data-driven avionics systems: Inferring failure modes from data streams. In: Dynamic Data-Driven Application Systems (DDDAS 2015), Reykjavik, Iceland, (June 2015)Google Scholar
  17. 17.
    Imai, Shigeru., Klockowski, Richard., Varela, Carlos A.: Self-healing spatio-temporal data streams using error signatures. In: 2nd International Conference on Big Data Science and Engineering (BDSE 2013), Sydney, Australia, (December 2013)Google Scholar
  18. 18.
    Imai, Shigeru., Patterson, Stacy., Varela, Carlos A.: Maximum sustainable throughput prediction for data stream processing over public clouds. In: 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2017), Madrid, Spain, (May 2017)Google Scholar
  19. 19.
    Imai, Shigeru., Varela, Carlos A.: A programming model for spatio-temporal data streaming applications. In: Dynamic Data-Driven Application Systems (DDDAS 2012), pages 1139–1148, Omaha, Nebraska, (June 2012)Google Scholar
  20. 20.
    Imai, Shigeru., Varela, Carlos A.: Programming spatio-temporal data streaming applications with high-level specifications. In: 3rd ACM SIGSPATIAL International Workshop on Querying and Mining Uncertain Spatio-Temporal Data (QUeST): Redondo Beach, p. 2012. California, USA, November (2012)Google Scholar
  21. 21.
    JavaCC Development Group. JavaCC - The Java Parser Generator. Accessed 06-12-2017
  22. 22.
    Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    John, George H., Langley, Pat.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the Eleventh conference on Uncertainty in artificial intelligence, pages 338–345. Morgan Kaufmann Publishers Inc., (1995)Google Scholar
  24. 24.
    Kamburugamuve, Supun., Ekanayake, Saliya., Pathirage, Milinda., Fox, Geoffrey.: Towards high performance processing of streaming data in large data centers. In: Parallel and Distributed Processing Symposium Workshops, 2016 IEEE International, pages 1637–1644. IEEE, (2016)Google Scholar
  25. 25.
    Klockowski, Richard S., Imai, Shigeru., Rice, Colin., Varela, Carlos A.: Autonomous data error detection and recovery in streaming applications. In: Proceedings of the International Conference on Computational Science (ICCS 2013). Dynamic Data-Driven Application Systems (DDDAS 2013) Workshop, pages 2036–2045, (May 2013)Google Scholar
  26. 26.
    Ludäscher, Bertram, Altintas, Ilkay, Berkley, Chad, Higgins, Dan, Jaeger, Efrat, Jones, Matthew, Lee, Edward A, Tao, Jing, Zhao, Yang: Scientific workflow management and the Kepler system. Concurrency and Computation: Practice and Experience 18(10), 1039–1065 (2006)CrossRefGoogle Scholar
  27. 27.
    Mack, Daniel L.C., Biswas, Gautam, Koutsoukos, Xenofon D., Mylaraswamy, Dinkar: Learning bayesian network structures to augment aircraft diagnostic reference models. IEEE Transactions on Automation Science and Engineering 14(1), 358–369 (2017)CrossRefGoogle Scholar
  28. 28.
    Mack, Daniel LC., Biswas, Gautam., Koutsoukos, Xenofon D., Mylaraswamy, Dinkar., Hadden, George.: Deriving bayesian classifiers from flight data to enhance aircraft diagnosis models. In: Annual Conference of the Prognostics and Health Management Society, (2011)Google Scholar
  29. 29.
    De Francisci Morales, Gianmarco, Bifet, Albert: SAMOA: Scalable Advanced Massive Online Analysis. Journal of Machine Learning Research 16, 149–153 (2015)Google Scholar
  30. 30.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Agenzia Nazionale per la Sicurezza del Volo. Final Report: Accident involving ATR 72 aircraft registration marks TS-LBB ditching off the coast of Capo Gallo (Palermo - Sicily), August 6th, (2005)Google Scholar
  32. 32.
    Portugal, I., Alencar, P., Cowan, D.: A preliminary survey on domain-specific languages for machine learning in big data. In: 2016 IEEE International Conference on Software Science, Technology and Engineering (SWSTE), (June 2016)Google Scholar
  33. 33.
    Rish, Irina.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 workshop on empirical methods in artificial intelligence, volume 3, pages 41–46. IBM New York, (2001)Google Scholar
  34. 34.
    Shekhar, Shashank., Gokhale, Aniruddha.: Dynamic resource management across cloud-edge resources for performance-sensitive applications. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pages 707–710. IEEE Press, (2017)Google Scholar
  35. 35.
    Sujeeth, Arvind., Lee, HyoukJoong., Brown, Kevin., Rompf, Tiark., Chafi, Hassan., Wu, Michael., Atreya, Anand., Odersky, Martin., Olukotun, Kunle.: OptiML: an implicitly parallel domain-specific language for machine learning. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 609–616, (2011)Google Scholar
  36. 36.
    The Apache Software Foundation. Apache Storm., January 2015. Accessed 06-14-2017
  37. 37.
    Wang, Jianwu., Tang, Yan., Nguyen, Mai., Altintas, Ilkay: A scalable data science workflow approach for big data bayesian network learning. In: Big Data Computing (BDC), 2014 IEEE/ACM International Symposium on, pages 16–25. IEEE, (2014)Google Scholar
  38. 38.
    Weimer, Markus., Condie, Tyson., Ramakrishnan, Raghu.: Machine learning in ScalOps, a higher order cloud computing language. In: NIPS 2011 Workshop on parallel and large-scale machine learning (BigLearn), volume 9, pages 389–396, (2011)Google Scholar
  39. 39.
    Zaharia, Matei., Das, Tathagata., Li, Haoyuan., Shenker, Scott., Stoica, Ion.: Discretized streams: an efficient and fault-tolerant model for stream processing on large clusters. In: Proceedings of the 4th USENIX conference on Hot Topics in Cloud Computing. USENIX Association, (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Shigeru Imai
    • 1
  • Sida Chen
    • 1
  • Wennan Zhu
    • 1
  • Carlos A. Varela
    • 1
    Email author
  1. 1.Department of Computer ScienceRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations