Advertisement

Cluster Computing

, Volume 22, Supplement 3, pp 5379–5396 | Cite as

Optimal evaluation of time step size in numerical simulation for two-dimensional flow sensing

  • Quanfeng QiuEmail author
  • Yuanhua Lin
  • Qiugui Shu
  • Xiangjun Xie
Article
  • 81 Downloads

Abstract

This paper proposes an optimal evaluation of time step size for numerical computations based on the 180 numerical simulations of the two-dimensional unsteady flow at low Reynolds number around a circular cylinder. A proper time step size is very important to obtain the right magnitude and frequency for the numerical computation to simulating the real flow. The optimal evaluation is found out after analyzing the influences of the time step sizes on the Strouhal numbers, vortex-shedding periods, lift and drag coefficients. The time step size is found out to be a function of the dividend of vortex-shedding period, the velocity, the feature size and the Strouhal number. The optimal dividend point of the vortex-shedding periods for the optimal time step size is in the interval \(\left[ {50,90} \right) \), and the average partition counts of the interval is an optimum approximation. So, the proposed optimal evaluation of time step size is calculated by \(D/\left( {14U} \right) \), of which D is the feature size and U is the velocity. The calculation to decide time step size is efficient and consequently the numerical simulations are more stable. Numerical results based on the provided time step size also bring on better agreements of the model parameters to reflect the real flow theoretically.

Keywords

Time step size Numerical simulation Strouhal number Two-dimensional flow Low Reynolds number 

References

  1. 1.
    He, Y., Jiang, Z., Xiao, R.: Numerical simulation for turbulence in a conical diffuser by DHR k-\(\varepsilon \) turbulence model: effects of time step, relaxation coefficient and of wall function \(\cdot \)BFC method numerical method. Nat. Sci. J. 01, 14–18 (2008)zbMATHGoogle Scholar
  2. 2.
    John, V.: Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. Int J Numer Methods Fluids 44(7), 777–788 (2004)CrossRefGoogle Scholar
  3. 3.
    Hussain, S., Schieweck, F., Turek, S.: An efficient and stable finite element solver of higher order in space and time for nonstationary incompressible flow. Int J Numer Methods Fluids 73(11), 927–952 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Breuer, M., De Nayer, G., Muensch, M., Gallinger, T., Wuechner, R.: Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation. J Fluid Struct 29, 107–130 (2012)CrossRefGoogle Scholar
  5. 5.
    Karimi, S., Nakshatrala, K.B.: A monolithic multi-time-step computational framework for first-order transient systems with disparate scales. COMPUT METHOD APPL M 283, 419–453 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Soares Jr., D., Rodrigues, G.G., Gonçalves, K.A.: An efficient multi-time-step implicit-explicit method to analyze solid-fluid coupled systems discretized by unconditionally stable time-domain finite element procedures. Comput Struct 88(5–6), 387–394 (2010)CrossRefGoogle Scholar
  7. 7.
    Tang, W., Yuan, G., Shen, Z., et al.: Positivity preserving time step for Lagrange method. Chin. J. Comput. Phys. 05, 633–640 (2012)Google Scholar
  8. 8.
    Zhou, N., Li, C.: An algorithm of penalty function finite element and self-adaptive time integration for unsteady Navier-Stokes equation. Acta Aeronaut. Astronaut. Sin. 03, 97–103 (1989)Google Scholar
  9. 9.
    Shi, Z., Liu, M., Guo, X.: Effects of computational domain in numerically calculating flow around a cylinder. China Water Transp. 07, 83–86 (2013)Google Scholar
  10. 10.
    Wang, K., Cheng, J., Duan, J., et al.: The numerical study based on self-adaptive time-step size on offshore floating wind power generation platform. Naval Archit. Ocean Eng. 02, 52–57 (2013)Google Scholar
  11. 11.
    Coupez, T., Jannoun, G., Nassif, N., Nguyen, H.C., Digonnet, H., Hachem, E.: Adaptive time-step with anisotropic meshing for incompressible flows. J Comput. Phys. 241, 195–211 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    John, V., Rang, J.: Adaptive time step control for the incompressible Navier-Stokes equations. Comput. Method. Appl. Mech. Eng. 199(9–12), 514–524 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jannoun, G., Hachem, E., Veysset, J., Coupez, T.: Anisotropic meshing with time-stepping control for unsteady convection-dominated problems. Appl. Math. Model. 39(7), 1899–1916 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lu, X.Y., Ling, G.C.: An analysis on three-dimensional vortical instability of oscillating flow around a circular cylinder. Appl. Math. Mech. 07, 699–707 (2003)Google Scholar
  15. 15.
    Boz, Z., Erdogdu, F., Tutar, M.: Effects of mesh refinement, time step size and numerical scheme on the computational modeling of temperature evolution during natural-convection heating. J. Food Eng. 123, 8–16 (2014)CrossRefGoogle Scholar
  16. 16.
    Idelsohn, S., Nigro, N., Limache, A., Oñate, E.: Large time-step explicit integration method for solving problems with dominant convection. Comput. Method Appl. Mech. Eng. 217–220, 168–185 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    You, S., Bathe, K.: Transient solution of 3D free surface flows using large time steps. Comput. Struct. 158, 346–354 (2015). doi: 10.1016/j.compstruc.2015.06.011 CrossRefGoogle Scholar
  18. 18.
    Dong, S.L., Wu, S.P.: Analysis of wake pattern and vortex evolution in flow past circular cylinder. J. Beijing Univ. Aeronaut. Astronaut. 08, 933–937 (2009)Google Scholar
  19. 19.
    Yu, D., Liu, H., Wang, C.: Numerical simulation of viscous flow past two tandem circular cylinders of different diameters. Period. Ocean Univ. China 7–8, 160–165 (2012)Google Scholar
  20. 20.
    Ji, C.N., Xiao, Z., Wang, Y.Z., Wang, H.K.: Numerical investigation on vortex-induced vibration of an elastically mounted circular cylinder at low Reynolds number using the fictitious domain method. Int. J. Comput. Fluid Dyn 25(4), 207–221 (2011). PII 9384488734MathSciNetCrossRefGoogle Scholar
  21. 21.
    Labbe, D.F.L., Wilson, P.A.: A numerical investigation of the effects of the spanwise length on the 3-D wake of a circular cylinder. J. Fluids Struct. 23(2007), 1168–1188 (2007)CrossRefGoogle Scholar
  22. 22.
    Al-Jamal, H., Dalton, C.: Vortex induced vibrations using Large Eddy Simulation at a moderate Reynolds number. J. Fluids Struct. 19(2004), 73–92 (2004)CrossRefGoogle Scholar
  23. 23.
    D’Alessandro, Valerio, Montelpare, Sergio, Ricci, Renato: Detached-eddy simulations of the flow over a cylinder at Re = 3900 using OpenFOAM. Comput. Fluids 136(2016), 152–169 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Franke, J., Frank, W.: Large eddy simulation of the flow past a circular cylinder at Re\(_{D}\)=3900. J. Wind Eng. Ind. Aerodyn. 90(2002), 1191–1206 (2002)CrossRefGoogle Scholar
  25. 25.
    Dong, S., Karniadakis, G.E.: DNS of flow past a stationary and oscillating cylinder at Re=10000. J. Fluids Struct. 20(2005), 519–531 (2005)CrossRefGoogle Scholar
  26. 26.
    Norberg, C.: Fluctuating lift on a circular cylinder: review and new measurements. J. Fluids Struct. 17(2003), 57–96 (2003)CrossRefGoogle Scholar
  27. 27.
    Sarpkaya, T.: Vortex-induced oscillations: a selective review. J. Appl. Mech. 46, 241–258 (1979)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Quanfeng Qiu
    • 1
    Email author
  • Yuanhua Lin
    • 1
  • Qiugui Shu
    • 2
  • Xiangjun Xie
    • 3
  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduChina
  2. 2.Faculty of National Territory ResourcesChina West Normal UniversityNanchongChina
  3. 3.Faculty of ScienceSouthwest Petroleum UniversityChengduChina

Personalised recommendations