Advertisement

Cluster Computing

, Volume 22, Supplement 3, pp 5333–5345 | Cite as

Finite element model based test and analysis on ACHC short columns and hoop coefficient

  • Jing JiEmail author
  • Wenfu Zhang
  • Chaoqing Yuan
  • Yingchun Liu
  • Zhichao Xu
  • Yang Wang
  • Xiaokun Chen
Article
  • 104 Downloads

Abstract

In order to promote the application of angle-steel confined high-strength concrete (ACHC) columns in new construction and reinforcement projects of civil engineering, this paper designs 15 groups of ACHC short columns with a shear span ratio of 1.5 under axial compression by taking the hoop coefficient, strength grade of concrete and yield strength of steel as parameters. Based on the constitutive model of steel and confined concrete and considering hoop effect, the simulation analysis on them was carried out by ANSYS software, and the rationality of finite element modelling is verified by comparing it with the experimental data. The author investigated the influence of different hoop coefficients, different concrete strength grades and different yield strength of steel to the mechanic behaviour of ACHC short columns, and the results show that the influence of hoop coefficient to the bearing capacity and ductility is more significantly than other parameters. Considering the hoop effect of batten plate to concrete, the linear relationship between the influence factor of batten plates and the hoop coefficient is inverted by using 1stopt software. At last, the calculation formula of ultimate bearing capacity of ACHC short columns is gotten, and the design method and suggestion of short columns are put forward.

Keywords

Angle-steel confined high-strength concrete Axial compression Short column Hoop coefficient Bearing capacity Design suggestion 

List of symbols

\(f_{cc}\)

Compressive strength of confined high-strength concrete

\(f_{co}\)

Compressive strength of non-restraint high-strength concrete

\(\varepsilon _{cc }\)

Peak strains of constraint high-strength concrete

\(\varepsilon _{co }\)

Peak strains of non-restraint high-strength concrete

\(f_{c}\)

Current stress of the high-strength concrete

\(\varepsilon _{c}\)

Strain of the high-strength concrete

\(E_{c}\)

Elastic modulus of concrete

\(E_{sec}\)

Secant modulus of confined concrete’s peak strain point

\(f_{r}\)

Constraint stress of transverse steel plate

\(k_{e }\)

Effective confinement factor

\(A_{e}\)

Effective constraint area of steel plate to core high-strength concrete

\(A_{cc}\)

Core concrete area surrounded by steel plate section centroid after deducting the longitudinal angle-steel area

\(A_{c}\)

Core concrete area surrounded by steel plate section centroid

\(\rho _{cc}\)

Ratio of vertical steel plate’s area and the area of core concrete surrounded by section steel plate’s centroid

\(w_i^{\prime } \)

Clear distance of the two adjoining longitudinal angle-steels

\({s}'\)

Clear space between two battens

\(b_{c}\)

Centroid distance of external two ring steel plates along x directions

\(d_{c}\)

Centroid distance of external two ring steel plates along y directions

\(f_{r }\)

Transverse plate’s constraint stress

\(f_r^{\prime } \)

Effective restraint stress

\(A_{s}\)

Section area of angle steels

\(f_{y }\)

Yield strength of angle steels

\(\alpha _{s}\)

Effect coefficient of batten plates spacing

\(\lambda _{t }\)

Hoop coefficient

Notes

Acknowledgements

The research work reported herein was made possible by the financial support from National Natural Science Foundation of China (No.51178087); Natural Science Foundation of Heilongjiang Province (No.E201336); PetroChina Innovation Foundation (No.2016D-5007-0608); Nurturing Foundation of Northeast Petroleum University of National Natural Science Foundation of China (No.NEPUPY-1-16); Project of China Petroleum and Chemical Industry Association (No.2017-11-05); University Graduate Innovation Project of Northeast Petroleum University (No.YJSCX2016-031NEPU) and Special Foundation of The Education Department of Heilongjiang Province of Northeast Petroleum University Dominant research direction (No.2016YSFX-02).

References

  1. 1.
    Zheng, W.Z., Ji, J.: Dynamic performance of angle-steel concrete columns under low cyclic loading-I: experimental study. Earthq. Eng. Eng. Vib. 7(1), 67–75 (2008). doi: 10.1007/s11803-008-0768-0 CrossRefGoogle Scholar
  2. 2.
    Zheng, W.Z., Ji, J.: Dynamic performance of angle-steel concrete columns under low cyclic loading-II: parametric study. Earthq. Eng. Eng. Vib. 7(2), 137–146 (2008). doi: 10.1007/s11803-008-0793-z CrossRefGoogle Scholar
  3. 3.
    Zheng, W.Z., Zhang, H.Y.: Time-history analysis & anti-collapse construction of storey-adding out-jacketing frame cooperated with the existing structure. J. Harbin Inst. Technol. 43(4), 6–11 (2011). doi: 10.11918/j.issn.0367-6234.2011.04.002 CrossRefGoogle Scholar
  4. 4.
    Ji, J., Zheng, W.Z., Wang, K.: Application of three types of outer-jacketing structures for adding story around the existing building. J. Harbin Inst. Technol. 40(2), 192–195+263 (2008). doi: 10.3321/j.issn:0367-6234.2008.02.006
  5. 5.
    Sheikh, S.A., Usumeri, S.M.: Strength and ductility of tied concrete columns. J. Struct. Div. 106(5), 1079–1102 (1980)Google Scholar
  6. 6.
    Rosario, M., Vincenzo, P.: Reinforced concrete columns strengthened with angles and battens subjected to eccentric load. Eng. Struct. 31(2), 539–550 (2009). doi: 10.1016/j.engstruct.2008.10.005 CrossRefGoogle Scholar
  7. 7.
    Ren, F.D., Liang, S.X., Tian, J.H.: Test study on reinforcement method of reinforced concrete frame column with angle-steel. Constr. Struct. 11(3), 46–51 (1983). doi: 10.14006/j.jzjgxb.1986.01.002 CrossRefGoogle Scholar
  8. 8.
    Jiang, S.F., Liu, Z.Y., Lin, Q.H.: Performance analysis and study of short columns with external angel steel. J. Northeast Univ. (Nat. Sci.) 18(1), 26–30 (1997)Google Scholar
  9. 9.
    Lu, H.W.: Test and finite element analysis on angle-steel confined concrete short column under axial compression. The master Dissertation of Northeast Petroleum University, Daqing, China (2009)Google Scholar
  10. 10.
    Dong, B.Y.: Study on shake table test of damaged single-span frame structure strengthened by steel braces and angle steel. The Master Dissertation of Institute of Engineering Mechanics, China Earthquake Administration, Harbin, China (2014)Google Scholar
  11. 11.
    Nie, J.G., Hu, H.S.: Experimental research on concrete filled steel plate composite coupling beams (I): seismic behavior. J. Build. Struct. 35(5), 1–9 (2014). doi: 10.14006/j.jzjgxb.2014.05.005 CrossRefGoogle Scholar
  12. 12.
    Zhao, G.T., Wang, L.N., Wang, S.M.: Experimental study on seismic behavior of partially encased concrete column-steel beam frame connected with top and seat angles. Prog. Steel Build. Struct. 19(3), 19–24 (2017). doi: 10.13969/j.cnki.cn31-1893.2017.03.003 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, Y.Q., Zhang, N., Ding, D.Y., Yang, Y.H., Peng, X.G.: Steel-concrete composite reinforcement method and the engineering application of steel frame structure. Sichuan Build. Sci. 43(1), 34–38 (2017). doi: 10.3969/j.issn.1008-1933.2017.01.007 CrossRefGoogle Scholar
  14. 14.
    Hao, W.H.: ANSYS Application Case of Civil Engineering, pp. 46–54. China Water Conservancy and Hydropower Press, Beijing (2005)Google Scholar
  15. 15.
    Shang, X.J., Qiu, F., Zhao, H.F.: The Senior Analysis Method of Structure Finite Element in ANSYS and Example Applications, pp. 111–116. China Water Conservancy and Hydropower Press, Beijing (2008)Google Scholar
  16. 16.
    Deng, J., Lee, M.M.K., Li, S.Q.: Flexural strength of steel-concrete composite beams reinforces with a prestressed CFRP plate. Constr. Build. Mater. 25(1), 379–384 (2011). doi: 10.1016/j.conbuildmat.2010.06.015 CrossRefGoogle Scholar
  17. 17.
    Deng, J., Lee, M.M.K.: Behavior under static loading of metallic beams reinforced with a bonded CFRP plate. Compos. Struct. 78(2), 232–242 (2007). doi: 10.1016/j.compstruct.2005.09.004 CrossRefGoogle Scholar
  18. 18.
    Meng, G., Zhang, L.H., Jia, J.Q.: Experimental study on flexural behavior of prestressed steel reinforced ultra-high strength concrete beams. Eng. Mech. 9(4), 534–536 (2013)Google Scholar
  19. 19.
    Ji, J., Xing, F., Wu, Y.J., et al.: Hysteretic behavior analysis and design on cross-type rigid joints of steel frame. J. Northeast Pet. Univ. 38(1), 102–111 (2014). doi: 10.3969/j.issn.2095-4107.2014.01.016 CrossRefGoogle Scholar
  20. 20.
    Ji, J., Li, B., Dai, J.G., et al.: The hysteretic behavior analysis and design of the single-span and double-layer steel frame based on the outer-jacketing storey-adding. J. Northeast Pet. Univ. 38(5), 111–120 (2014). doi: 10.3969/j.issn.2095-4107.2014.05.014 CrossRefGoogle Scholar
  21. 21.
    Zhang, W.F., Zhao, W.Y., Li, W., et al.: Calculation of on flexural stiffness of concrete-filled steel tube and its affecting factors. J. Daqing Pet. Inst. 25(2), 98–99 (2001). doi: 10.3969/j.issn.2095-4107.2001.02.032 CrossRefGoogle Scholar
  22. 22.
    Zhang, W.F., Hao, J.F., Xue, J.H., et al.: Constitutive model of concrete filled circular steel tube brace members under cyclic load. J. Daqing Pet. Inst. 34(3), 104–108 (2010). doi: 10.3969/j.issn.2095-4107.2010.03.024 CrossRefGoogle Scholar
  23. 23.
    Mander, J.B., Priestley, M.J.N., Park, R.: Theoretical stress-strain mode for confined concrete. J. Struct. Eng. 114(8), 1804–1823 (1988)CrossRefGoogle Scholar
  24. 24.
    Yang, K., Shi, Q.X., Zhao, J.L., et al.: Study on the constitutive model of high-strength-concrete confined by high strength stirrups. China Civil Eng. J. 46(1), 31–41 (2013). doi: 10.15951/j.tmgcxb.2013.01.013 CrossRefGoogle Scholar
  25. 25.
    Mander, J.B., Priestley, M.J.N., Park, R.: Observed stress-strain behavior of confined concrete. J. Struct. Eng. 114(8), 1827–1849 (1988)CrossRefGoogle Scholar
  26. 26.
    Giménez, E., Adam, J.M., Ivorra, S., Calderón, P.A.: Influence of strips configuration on the behavior of axially loaded RC columns strengthened by steel angles and strips. Mater. Des. 30(10), 4103–4111 (2009). doi: 10.1016/j.matdes.2009.05.010 CrossRefGoogle Scholar
  27. 27.
    Campione, G.: Load carrying capacity of RC compressed columns strengthened with steel angles and strips. Eng. Struct. 40(7), 457–465 (2012). doi: 10.1016/j.engstruct.2012.03.006 CrossRefGoogle Scholar
  28. 28.
    Jia, J.Q., Jiang, L.J., Zhao, G.F.: Study on the relationship between pressure coefficient and stirrup reinforcement ration of steel reinforced high strength concrete short column. Build. Struct. 32(10), 218–222 (2002)Google Scholar
  29. 29.
    Jia, J.Q., Sun, H.M., Li, D.Y.: Limited values on axial compression ratio of steel reinforced high-strength concrete short columns. J. Dalian Univ. Technol. 42(2), 67–70 (2002). doi: 10.3321/j.issn:1000-8608.2002.02.019 CrossRefGoogle Scholar
  30. 30.
    Song, K., Li, Z.B.: The seismic performance test of high axial compression ratio of RC short column under the oblique load. J. Northeast Pet. Univ. 38(2), 102–108+120 (2014). doi: 10.3969/j.issn.2095-4107.2014.02.016
  31. 31.
    GB50010-2010: Code for design of concrete structures. China Building Industry Press, Beijing (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Jing Ji
    • 1
    Email author
  • Wenfu Zhang
    • 1
  • Chaoqing Yuan
    • 1
  • Yingchun Liu
    • 1
  • Zhichao Xu
    • 1
  • Yang Wang
    • 1
  • Xiaokun Chen
    • 1
  1. 1.Department of Civil and Architecture EngineeringNortheast Petroleum UniversityDaqingPeople’s Republic of China

Personalised recommendations