Advertisement

Cluster Computing

, Volume 22, Supplement 1, pp 719–729 | Cite as

Locating the critical slip surface in a slope stability analysis by enhanced fireworks algorithm

  • Zeyun XiaoEmail author
  • Bin Tian
  • Xiaochun Lu
Article

Abstract

In this paper we propose an enhanced fireworks algorithm for locating the critical slip surface giving the minimum safety factor in slope stability analysis, and we employ a concise algorithm of the Morgenstern and Price method to calculate the safety factor. To demonstrate its applicability and to illustrate the reliability and effectiveness of the proposed method, we present three benchmark examples with varying complex slopes. By comparing the minimum safety factor and the total number of iterations, the proposed method is proved to be highly competitive in terms of efficiency and accuracy.

Keywords

Fireworks algorithm Critical slip surface Safety factor Slope stability Optimization 

Notes

Acknowledgements

The authors are grateful for fruitful discussions with Dr. Jun Zheng from Zhejiang University, China. The first author also appreciates very much the support to this research of China Three Gorges University.

References

  1. 1.
    Zolfaghari, R.A., Heath, A.C., McCombie, P.F.: Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Comput. Geotech. 32(3), 139–152 (2005)CrossRefGoogle Scholar
  2. 2.
    Goh, A.T.C.: Search for critical slip circle using genetic algorithms. Civil Eng. Environ. Syst. 17(3), 181–211 (2000)CrossRefGoogle Scholar
  3. 3.
    Khajehzadeh, M., Taha, M.R., El-Shafie, A., Eslami, M.: Search for critical failure surface in slope stability analysis by gravitational search algorithm. Int. J. Phys. Sci. 6(21), 5012–5021 (2011)Google Scholar
  4. 4.
    Zhu, J.F., Chen, C.F.: Search for circular and noncircular critical slip surfaces in slope stability analysis by hybrid genetic algorithm. Cent. South Univ. 21(1), 387–397 (2014)CrossRefGoogle Scholar
  5. 5.
    Duncan, J.M.: State of the art: limit equilibrium and finite-element analysis of slopes. Am. Soc. Civil Eng. 122(7), 577–596 (1996)Google Scholar
  6. 6.
    Zhu, D.Y., Lee, C.F., Qian, Q.H., Zou, Z.S., Sun, F.: A new procedure for computing the factor of safety using the Morgenstern–Price method. Can. Geotech. J. 38(4), 882–888 (2001)CrossRefGoogle Scholar
  7. 7.
    Celestino, T.B., Duncan, J.M.: Simplified search for non-circular slip surface. In: Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, pp. 391–394 (1981)Google Scholar
  8. 8.
    Arai, K., Tagyo, K.: Determination of noncircular slip surface giving the minimum factor of safety in slope stability analysis. Soils Found 25(1), 43–51 (1985)CrossRefGoogle Scholar
  9. 9.
    Chen, Z.Y.: Random trials used in determining global minimum factors of safety of slopes. Can. Geotech. J. 29(2), 225–233 (1992)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Greco, V.R.: Efficient Monte Carlo technique for locating critical slip surface. J. Geotech. Eng. 122(7), 517–525 (1996)CrossRefGoogle Scholar
  11. 11.
    Malkawi, A.I.H., Hassan, W.F., Sarma, S.K.: Global search method for locating general slip surface using Monte-Carlo techniques. J. Geotech. Geoenviron. Eng. 53(5), 9–513 (1998)Google Scholar
  12. 12.
    Pham, H.T.V., Fredlund, D.G.: The application of dynamic programming to slope stability analysis. Can. Geotech. J. 40(4), 830–847 (2003)CrossRefGoogle Scholar
  13. 13.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Inspiration for optimization from social insect behaviour. Nature 406(6791), 39–42 (2000)CrossRefGoogle Scholar
  14. 14.
    Li, Y.C., Chen, Y.M., Zhan, T.L.T., Ling, D.S., Cleall, P.J.: An efficient approach for locating the critical slip surface in slope stability analyses using a real-coded genetic algorithm. Can. Geotech. J. 47(7), 806–820 (2010)CrossRefGoogle Scholar
  15. 15.
    Goh, A.T.C.: Genetic algorithm search for critical slip surface in multiple-wedge stability analysis. Can. Geotech. J. 36(2), 382–391 (1999)CrossRefGoogle Scholar
  16. 16.
    Solati, S., Habibagahi, G.: A genetic approach for determining the generalized interslice forces and the critical non-circular slip surface. Iran. J. Sci. Technol. Trans. B Eng. 30(1), 1–20 (2006)Google Scholar
  17. 17.
    Cheng, Y.M., Li, L., Chi, S.C., Wei, W.B.: Particle swarm optimization algorithm for the location of the critical non-circular failure surface in two-dimensional slope stability analysis. Comput. Geotech. 34(2), 92–103 (2007)CrossRefGoogle Scholar
  18. 18.
    Cheng, Y.M., Li, L., Chi, S.C., Wei, W.B.: Determination of the critical slip surface using artificial fish swarms algorithm. J. Geotech. Geoenviron. Eng. 134(2), 244–251 (2008)CrossRefGoogle Scholar
  19. 19.
    Du, S., Zhang, J., Li, J.T., Su, Q.M., Zhu, W.B., Chen, Y.J.: The deformation prediction of mine slope surface using PSO-SVM model. TELKOMNIKA Indones. J. Electr. Eng. 11(12), 7182–7189 (2013)Google Scholar
  20. 20.
    Kahatadeniya, K.S., Nanakorn, P., Neaupane, K.M.: Determination of the critical failure surface for slope stability analysis using ant colony optimization. Eng. Geol. 108(1), 133–141 (2009)CrossRefGoogle Scholar
  21. 21.
    Kang, F., Li, J.J., Ma, Z.Y.: An artificial bee colony algorithm for locating the critical slip surface in slope. Eng. Optim. 45(2), 207–223 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tan, Y., Zhu, Y.C.: Fireworks algorithm for optimization. Lect. Notes Comput. Sci. 21(7), 355–364 (2010)CrossRefGoogle Scholar
  23. 23.
    Zheng, S.Q., Andreas, J., Tan, Y.: Enhanced fireworks algorithm. In: 2013 IEEE Congress on Evolutionary Computation(CEC), IEEE, pp. 2069–2077. IEEE (2013)Google Scholar
  24. 24.
    Goswami, D., Chakraborty, S.: A study on the optimization performance of fireworks and cuckoo search algorithms in laser machining processes. J. Inst. Eng. 96(3), 215–229 (2015)Google Scholar
  25. 25.
    Imran, A.M., Kowsalya, M.: A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using fireworks algorithm. Int. J. Electr. Power Energy Syst. 62, 312–322 (2014)CrossRefGoogle Scholar
  26. 26.
    Morgenstern, N.R., Price, V.E.: The analysis of the stability of general slip surfaces. Géotechnique 15(1), 79–93 (1965)CrossRefGoogle Scholar
  27. 27.
    Chen, Z.Y., Morgenstern, N.R.: Extensions to the generalized method of slices for stability analysis. Can. Geotech. J. 20(1), 104–119 (1983)CrossRefGoogle Scholar
  28. 28.
    Zhu, D.Y., Lee, C.F., Qian, Q.H., Chen, G.R.: A concise algorithm for computing the factor of safety using the Morgenstern–Price method. Can. Geotech. J. 42(1), 272–278 (2005)CrossRefGoogle Scholar
  29. 29.
    Yamagami, T.: Search for noncircular slip surfaces by the Morgenstern–Price method. In: Proceedings 6th International Conference on Numerical Methods in Geomechanics, pp. 1335–1340 (1988)Google Scholar
  30. 30.
    Cheng, Y.M., Li, L., Lansivaara, T., Chi, S.C., Sun, Y.J.: An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis. Eng. Optim. 40(2), 95–115 (2008)CrossRefGoogle Scholar
  31. 31.
    Bolton, H., Heymann, G., Groenwold, A.: Global search for critical failure surface in slope stability analysis. Eng. Optim. 35(1), 51–65 (2003)CrossRefGoogle Scholar
  32. 32.
    Fredlund, D.G., Krahn, J.: Comparison of slope stability methods of analysis. Can. Geotech. J. 14(3), 429–439 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Water Resources and Hydropower EngineeringWuhan UniversityWuhanChina
  2. 2.College of Hydraulic and Environmental EngineeringChina Three Gorgers UniversityYichangChina

Personalised recommendations