Cluster Computing

, Volume 22, Supplement 5, pp 10729–10741 | Cite as

Manifold scalable video conveyance for m-wellbeing crisis relevance

  • L. BalajiEmail author
  • K. K. Thyagharajan


M-wellbeing utilities are possible to be more and more significant in managing crisis relevance’s which allows backing in real-time through distant health specialists. During such circumstance, a manifold wellbeing-associated streams of video is transmitted from the emergency vehicle to distant clinic will enhance the effectiveness of tele-discussion utility, however, needs a wide bandwidth to support preferred peak signal-noise-ratio (PSNR), no more constantly assured by wireless communication. So as to convey a manifold stream of videos in a solitary bandwidth-constrained wireless medium, a framework proposed in this paper which allows categorizing the existing videos, choose dynamically and adjust accordingly, so that finest video streams are transmitted. The camera grading technique mutually functions along with inter-layer adjustment system intended for manifold scalable video to attain various targets as well as tradeoffs concerns to the amount and target PSNR of videos being conveyed. The goal is to adaptively alter the completely conveyed throughput to support the existing bandwidth, whilst offering high PSNR to investigative videos and low PSNR to less significant environment videos. Considering a sensible crisis situation, simulations performed in long term evolution advanced communication demonstrate that the proposed content and environment-sensitive result can choose the finest video source from a visual perspective and to attain ideal end-to-end PSNR both for investigative and environment videos.


Camera grading technique m-wellbeing Content and environment-sensitive Scalable video coding (SVC) Video adjustment 


  1. 1.
    Ahern, D.K., Kreslake, J.M., Phale, J.M.: What Is eHealth (6): perspectives on the evolution of eHealth research. J. Med. Internet Res. 8(1), e4 (2006)CrossRefGoogle Scholar
  2. 2.
    Perakis, K.: Third generation (3G) cellular networks. In: Telemedicine: Technological Overview, Applications, and Limitations. IGI Global, Hershey, PA, USA (2014)Google Scholar
  3. 3.
    Paradiso, R., et al.: Remote health monitoring with wearable non-invasive mobile system: the healthwear project. In: Proceedings IEEE 30th Annual International Conference of the IEEE, pp. 1699–1702 . IEEE (Aug. 2008)Google Scholar
  4. 4.
    Panayides, A., Eleftheriou, I., Pantziaris, M.: Open-source telemedicine platform for wireless medical video communication. Int. J. Telemed. Appl. 2013(457491), 12 (2013)Google Scholar
  5. 5.
    Martini, M.G., Istepanian, R.S.H., Mazzotti, M., Philip, N.Y.: Robust multilayer control for enhanced wireless telemedical video streaming. IEEE Trans. Mob. Comput. 9(1), 5–16 (2010)CrossRefGoogle Scholar
  6. 6.
    Tavli, B., Bicakci, K., Zilan, R., et al.: A survey of visual sensor networks. Multimed. Tools Appl. 60, 689 (2012)CrossRefGoogle Scholar
  7. 7.
    Ferrus, R., Sallent, O., Baldini, G., Goratti, L.: LTE: the technology driver for future public safety communications. IEEE Commun. Mag. 51(10), 154–161 (2013)CrossRefGoogle Scholar
  8. 8.
    Skorin-Kapov, L., Matijasevic, M.: Analysis of QoS requirements for E-health services and mapping to evolved packet system QoS classes. Int. J. Telemed. Appl. 2010(628086), 9 (2010)Google Scholar
  9. 9.
    Soro, S., Heinzelman, W.: A survey of visual sensor networks. Adv. Multimed. 2009(640386), 21 (2009)Google Scholar
  10. 10.
    Konda, K.R., Conci, N., De Natale, F.: Global coverage maximization in PTZ-camera networks based on visual quality assessment. IEEE Sens. J. 16(16), 6317–6332 (2016)CrossRefGoogle Scholar
  11. 11.
    Cho, Y., Lim, S.O., Yang, H.S.: Collaborative occupancy reasoning in visual sensor network for scalable smart video surveillance. IEEE Trans. Consumer Electron. 56(3), 1997–2003 (2010)CrossRefGoogle Scholar
  12. 12.
    Gallego, J.R., et al.: Performance analysis of multiplexed medical data transmission for mobile emergency care over the UMTS channel. IEEE Trans. Inf. Technol. Biomed. 9(1), 13–22 (2005)CrossRefGoogle Scholar
  13. 13.
    Alinejad, A., Philip, N.Y., Istepanian, R.S.: Cross-layer ultrasound video streaming over mobile WiMAX and HSUPA networks. IEEE Trans. Inf. Technol. Biomed. 16(1), 31–39 (2012)CrossRefGoogle Scholar
  14. 14.
    Martini, M.G., Istepanian, R.S.H., Mazzotti, M., Philip, N.: A crosslayer approach for wireless medical video streaming in robotic teleultrasonography. In: Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3082–3085 (Aug. 2007)Google Scholar
  15. 15.
    Ghanavati, S.A., Jemal, H.I., Davood, A., Abdulhameed, A.: Cloud-assisted IoT-based health status monitoring framework. Clust. Comput. 20(2), 1843–1853 (2017)CrossRefGoogle Scholar
  16. 16.
    Debono, C.J., Micallef, B.W., Philip, N.Y., AliNejad, A., Istepanian, R.S., Amso, N.N.: Cross Layer design for optimised region of interest of ultrasound video data over mobile WiMAX. IEEE Trans. Inf. Technol. Biomed. 16(6), 1007–1014 (2013)CrossRefGoogle Scholar
  17. 17.
    Hassan, M.M., Hossain, M.A., Abdullah-Al-Wadud, M., Al-Mudaihesh, T., Alyahya, S., Alghamdi, A.: A scalable and elastic cloud-assisted publish/subscribe model for IPTV video surveillance system. Clust. Comput. 18(4), 1539–1548 (2015)CrossRefGoogle Scholar
  18. 18.
    Rehman, I.U., Philip, N.Y.: M-QoE driven context, content and network aware medical video streaming based on fuzzy logic system over 4G and beyond small cells. In: Proceedings of IEEE EUROCON 2015-International Conference on Computer as a Tool, pp. 1–6 (Sep. 2015)Google Scholar
  19. 19.
    Panayides, A., et al.: High-resolution, low-delay, and error-resilient medical ultrasound video communication using H.264/AVC over mobile WiMAX networks. IEEE J. Biomed. Health Inf. 17(3), 619–628 (2013)Google Scholar
  20. 20.
    Cicalo, S., Mazzotti, M., Moretti, S., Tralli, V., Chiani, M.: Multiple video delivery in m-health emergency applications. IEEE Trans. Multimed. 18(10), 1988–2001 (2016)CrossRefGoogle Scholar
  21. 21.
    Iacobelli, L., et al.: An architecture for m-health services: The CONCERTO project solution. In: Proceedings of European Conference Networks and Communication, pp. 118–122 (Jun. 2015)Google Scholar
  22. 22.
    Antoniou, Z., et al.: Adaptive emergency scenery video communications using HEVC for responsive decision support in disaster incidents. In: Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 173–176 (Aug. 2015)Google Scholar
  23. 23.
    Schwarz, H., Marpe, D., Wiegand, T.: Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans. Circ. Syst. Video Technol. 17(9), 1103–1120 (2007)Google Scholar
  24. 24.
    Hu, H., et al.: Proxy-based multi-stream scalable video adaptation over wireless networks using subjective quality and rate models. IEEE Trans. Multimed. 15(7), 1638–1652 (2013)CrossRefGoogle Scholar
  25. 25.
    Cical‘o, S., Tralli, V.: Distortion-fair cross-layer resource allocation for scalable video transmission in OFDMA wireless networks. IEEE Trans. Multimed. 16(3), 848–863 (2014)Google Scholar
  26. 26.
    Moretti, S., Cical‘o, S., Mazzotti, M., Tralli, V., Chiani, M.: Content/context-aware multiple camera selection and video adaptation for the support of m-health services. Procedia Comput. Sci, 40, 206–213 (2014)Google Scholar
  27. 27.
    Shaeffer, D.K.: MEMS inertial sensors: a tutorial overview. IEEE Commun. Mag. 51(4), 100–109 (2013)CrossRefGoogle Scholar
  28. 28.
    Sobhani, B., Paolini, E., Giorgetti, A., Mazzotti, M., Chiani, M.: Target tracking for UWB multistatic radar sensor networks. IEEE J. Sel. Topics Signal Process. 8(1), 125–136 (2014)CrossRefGoogle Scholar
  29. 29.
    Dardari, D., Closas, P., Djuric, P.M.: Indoor tracking: theory, methods, and technologies. IEEE Trans. Veh. Technol. 64(4), 1263–1278 (2015)CrossRefGoogle Scholar
  30. 30.
    Glanzer, G.: Personal and first-responder positioning: State of the art and future trends. Proceedings Ubiquitous Positioning, Indoor Navigation, Location Based Service 2012, 1–7 (Oct. 2012)Google Scholar
  31. 31.
    Policy and Charging Control Architecture, 3GPP TS 23.203, v10.7.0, 12Google Scholar
  32. 32.
    Stuhlmuller, K., Farber, N., Link, M., Girod, B.: Analysis of video transmission over lossy channels. IEEE J. Sel. Areas Commun. 18(6), 1012–1032 (2000)CrossRefGoogle Scholar
  33. 33.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Imag. Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  34. 34.
    Cical‘o, S., Changuel, N., Tralli, V., Sayadi, B., Faucheux, F., Kerboeuf, S.: Improving QoE and fairness in HTTP adaptive streaming over LTE network. IEEE Trans. Circ. Syst. Video Technol . 26(12), 2284–2298 (2016)Google Scholar
  35. 35.
    Martini, M.G., Hewage, C.T.: Flexible macroblock ordering for context-aware ultrasound video transmission over mobile WiMAX. Int. J. Telemed. Appl. 2010, 1–7 (2010)Google Scholar
  36. 36.
    Lin, K., Dumitrescu, S.: Cross-layer resource allocation for scalable video over OFDMA wireless networks: trade-off between quality fairness and efficiency. IEEE Trans. Mulmed. 99, 1 (2017)Google Scholar
  37. 37.
    Mazzotti, M., Moretti, S., Chiani, M.: Multiuser resource allocation with adaptive modulation and LDPC coding for heterogeneous traffic in OFDMA downlink. IEEE Trans. Commun. 60(10), 2915–2925 (2012)CrossRefGoogle Scholar
  38. 38.
    JSVM 9.19.11, Reference Software (Feb. 2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Faculty of Information & CommunicationAnna UniversityChennaiIndia
  2. 2.Department of ECEVelammal Institute of TechnologyChennaiIndia
  3. 3.RMD Engineering CollegeChennaiIndia

Personalised recommendations