Advertisement

Cluster Computing

, Volume 21, Issue 2, pp 1311–1329 | Cite as

An empirical evaluation of energy-aware load balancing technique for cloud data center

  • Nidhi Jain KansalEmail author
  • Inderveer Chana
Article
  • 145 Downloads

Abstract

Load balancing is one of the main challenges in cloud computing, to dynamically distribute the workload across multiple nodes to ensure that no node is either overloaded or underloaded. This paper presents a novel energy-aware load balancing technique that uses an amalgamation of the Artificial Bee Colony and the Firefly algorithms. This technique aspires to balance the load of the cloud infrastructure while trying to maximize the energy efficiency through the efficient usage of the cloud resources. The proposed load balancing technique has been executed in the actual data center of BSNL, Chandigarh. The competence of the proposed technique is exhibited by comparing it with the three standard techniques namely RR, FFD and ACO. The experimentation results show that the proposed algorithm outperformed the existing approach, followed in the data center and the other two approaches. It saved 40.47% of the average energy consumption, which is accomplished by improving CPU utilization level by 49.68%, memory utilization level by 24.41%, reducing VM migrations by 63.10% and saving 53.21% of nodes. The improved results illustrate that the proposed technique effectively balances the load, thereby curtailing the energy consumption and enhancing the performance levels of the cloud data center.

Keywords

Energy-aware Green computing Load balancing Resource utilization Virtual machine migration 

Notes

Acknowledgements

This research is conducted at Bharat Sanchar Nigam Limited (BSNL), GSM Billing Data center, Chandigarh, India. The researchers gratefully acknowledge the generous assistance provided by the BSNL and its staff. We also express our appreciation to the organization for granting us an opportunity to work on its infrastructure.

References

  1. 1.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: a Berkeley view of cloud computing. EECS Department, University of California, Berkeley, Technical Report No. UCB/EECS-2009-28, pp. 1–23 (2009)Google Scholar
  2. 2.
    Kaur, T., Chana, I.: Energy aware scheduling of deadline-constrained tasks in cloud computing. Cluster Comput. 19(3), 1–20 (2016). doi: 10.1007/s10586-016-0566-9 Google Scholar
  3. 3.
    Rao, K.T., Kiran, P.S., Reddy, L.S.S.: Energy efficiency in datacenters through virtualization: a case study. Glob. J. Comput. Sci. Technol. 10(3), 2–6 (2010)Google Scholar
  4. 4.
    Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized cloud data centers. In: Proceedings of 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, Melbourne, Australia, pp. 826–831 (2010)Google Scholar
  5. 5.
    Pallis, G.: Cloud computing: the new frontier of internet computing. IEEE J. Internet Comput. 14(5), 70–73 (2010)CrossRefGoogle Scholar
  6. 6.
    Garg, S.K., Yeob, C.S., Anandasivamc, A., Buyya, R.: Environment-conscious scheduling of HPC applications on distributed cloud-oriented data centers. J. Parall. Distrib. Comput. 70(6), 1–18 (2010)Google Scholar
  7. 7.
    Lucky, R.W.: Cloud computing. IEEE J. Spect. 46(5), 27–45 (2009)Google Scholar
  8. 8.
    Dikaiakos, M.D., Pallis, G., Katsa, D., Mehra, P., Vakali, A.: Cloud computing: distributed internet computing for IT and scientific research. IEEE J. Int. Comput. 13(5), 10–13 (2009)CrossRefGoogle Scholar
  9. 9.
    Mata-Toledo, R., Gupta, P.: Green data center: how green can we perform. J. Technol. Res. 2(1), 1–8 (2010)Google Scholar
  10. 10.
    Kaur, T., Chana, I.: Energy efficiency techniques in cloud computing-a survey and taxonomy. ACM Comput. Surv. 48(2), 22 (2015)CrossRefGoogle Scholar
  11. 11.
    Kabiraj, S., Topkar, V., Walke, R.C.: Going green: a holistic approach to transform business. Int. J. Manag. Inform. Technol. 2(3), 22–31 (2010)Google Scholar
  12. 12.
    Baliga, J., Ayre, R.W.A., Hinton, K., Tucker, R.S.: Green cloud computing: balancing energy in processing, storage, and transport. Proc. IEEE 99(1), 149–167 (2011)CrossRefGoogle Scholar
  13. 13.
    Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.: A taxonomy and survey of energy efficient data centers and cloud computing systems. Adv. Comput. 82(2), 47–111 (2011)CrossRefGoogle Scholar
  14. 14.
    Nagothu, K.M., Kelley, B., Prevost, J., Jamshidi. M.: Ultra low energy cloud computing using adaptive load prediction. In: Proceedings of IEEE World Automation Congress (WAC), Kobe, pp. 1–7 (2010)Google Scholar
  15. 15.
    Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J. Int. Serv. Appl. 1(1), 7–18 (2010)CrossRefGoogle Scholar
  16. 16.
    Bessis, N., Sotiriadis, S., Pop, F., Cristea, V.: Using a novel message exchanging optimization (MEO) model to reduce energy consumption in distributed systems. J. Simul. Model. Pract. Theory 39, 104–120 (2013)CrossRefGoogle Scholar
  17. 17.
    Berl, A., Gelenbe, E., Girolamo, M., Giuliani, G., Meer, H., Dang, M.Q., Pentikousis, K.: Energy-efficient cloud computing. Comput. J. Adv. Access 53(7), 1045–1051 (2009)Google Scholar
  18. 18.
    Rima, B.P., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing systems. In: Proceedings of 5th IEEE International Joint Conference on INC, IMS and IDC, Seoul, Korea, pp. 44–51, (2009)Google Scholar
  19. 19.
    Belabbas, Y., Meriem, M.: Distributed load balancing model for grid computing. Afr. J. Res. Comput. Appl. Math. 12(1), 43–60 (2010)Google Scholar
  20. 20.
    Zhang, Z., Zhang, X.: A load balancing mechanism based on ant colony and complex network theory in open cloud computing federation. In: Proceedings of 2nd International Conference on Industrial Mechatronics and Automation (ICIMA), Wuhan, China, pp. 240–243 (2010)Google Scholar
  21. 21.
    Kansal, N.J., Chana, I.: Artificial bee colony based energy-aware resource utilization technique for cloud computing. Concurr. Comput. 27(5), 1207–1225 (2014). doi: 10.1002/cpe.3295 CrossRefGoogle Scholar
  22. 22.
    Yue, M.: A simple proof of the inequality FFD(L) \(\le \) (11/9)OPT(L) + 1, for all L, for the FFD bin-packing algorithm. Acta Math. Appl. Sin. 7(4), 321331 (1991)CrossRefGoogle Scholar
  23. 23.
    Dorigo, M., Gambardella, L.M.: Ant colonies for the traveling salesman problem. BioSystems 43, 73–81 (1997)CrossRefGoogle Scholar
  24. 24.
    Kansal, N.J., Chana, I.: Energy-aware virtual machine migration for cloud computing-a firefly optimization approach. J. Grid Comput. 14(2), 327–345 (2014). doi: 10.1007/s10723-016-9364-0 CrossRefGoogle Scholar
  25. 25.
    Kansal, N.J., Chana, I.: Cloud load balancing techniques: a step towards green computing. Int. J. Comput. Sci. Issues 9(1), 238–246 (2012)Google Scholar
  26. 26.
    Kansal, N.J., Chana, I.: Exixsting load balancing techniques in cloud computing: a systematic review. J. Inform. Syst. Commun. 3(1), 87–91 (2012)Google Scholar
  27. 27.
    Megharaj, G.C., Mohan, K.G.: Two level hierarchical model of load balancing in cloud. Int. J. Emerg. Technol. Adv. Eng. 3(10), 307–311 (2013)Google Scholar
  28. 28.
    Ruzan, I.N., Chuprat, S., Razmara, P.: A hybrid algorithm using genetic algorithm Hadoop MapReduce optimization for energy efficiency in cloud computing platform. Int. J. Sci. Res. 3(11), 1630–1641 (2014)Google Scholar
  29. 29.
    Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. J. Future Gener. Comput. Syst. 28(5), 755–768 (2012)CrossRefGoogle Scholar
  30. 30.
    Minas, L., Ellison, B.: Energy Efficiency for Information Technology: How to Reduce Power Consumption in Servers and Data Centers. Intel Press, Hillsboro, OR (2009)Google Scholar
  31. 31.
    Suphalakshmi, A., Sreejith, M.: An intelligent, energy conserving load balancing algorithm for the cloud environment using ant’s stigmergic behavior. Int. J. Commun. Eng. 04(4), 72–76 (2012)Google Scholar
  32. 32.
    Ramani, M.M., Bohara, M.H.: Energy aware load balancing in cloud computing using virtual machines. J. Eng. Comput. Appl. Sci. 4(1), 1–5 (2015)Google Scholar
  33. 33.
    Anandharajan, T.R.V., Bhagyaveni, M.A.: Co-operative scheduled energy aware load-balancing technique for an efficient computational cloud. Int. J. Comput. Sci. Issues 8(2), 571–576 (2011)Google Scholar
  34. 34.
    Galloway J.M., Smith K.L., Vrbsky, S.S.: Power aware load balancing for cloud computing. In: Proceedings of the World Congress on Engineering and Computer Science, (WCECS 2011), San Francisco, USA, vol. 1, October 19–21 (2011)Google Scholar
  35. 35.
    Adhikari, J., Patil, S.: Double threshold energy aware load balancing in cloud computing. In: Proceedings of the 4th ICCCNT -2013, Tiruchengode, India, July 4–6 (2013)Google Scholar
  36. 36.
    Ghafari, S.M., Fazeli, M., Patooghy, A., Rikhtechi, L.: Bee-MMT: a load balancing method for power consumption management in cloud computing. In: Contemporary Computing (IC3), 2013 Sixth International Conference on IEEE, pp. 76–80. IEEE (2013)Google Scholar
  37. 37.
    Dalapati, P., Sahoo, G.: Green solution for cloud computing with load balancing and power consumption management. Int. J. Emerg. Technol. Adv. Eng. 3(3), 353–359 (2013)Google Scholar
  38. 38.
    Sallami, N.M.A.: Load balancing in green cloud computation. In: Proceedings of the World Congress on Engineering (WCE 2013), London, UK, vol. 2, July 3–5 (2013)Google Scholar
  39. 39.
    Sallami, N.M.A., Daoud, A.A., Alousi, S.A.A.: Load balancing with neural network. Int. J. Adv. Comput. Sci. Appl. 4(10), 138–145 (2013)Google Scholar
  40. 40.
    RamKumar, S., Vaithiyanathan, V., Lavanya, M.: Towards efficient load balancing and green it mechanisms in cloud environment. World Appl. Sci. J. 29, 159–165 (2014)Google Scholar
  41. 41.
    Sirbu, A., Pop, C., Serbanescu, C., Pop, F.: Predicting provisioning and booting times in a Metal-as-a service system. J. Future Gener. Comput. Syst. 72, 180–192 (2016)CrossRefGoogle Scholar
  42. 42.
    Speitkamp, B., Bichler, M.: A mathematical programming approach for server consolidation problems in virtualized data centers. IEEE Trans. Serv. Comput. 3(4), 266–278 (2010)CrossRefGoogle Scholar
  43. 43.
    Chebiyyam, M., Malviya, R., Bose, S.K., Sundarrajan, S.: Server consolidation: leveraging the benefits of virtualization. Infosys Res. 7(1), 65–75 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringThapar UniversityPatialaIndia

Personalised recommendations