Advertisement

Cluster Computing

, Volume 21, Issue 2, pp 1301–1309 | Cite as

Parallel multilayer particle collision detection method based on performance estimation

  • Shubo Chen
  • Kejing HeEmail author
  • Lingcong You
  • Funan Lin
Article

Abstract

Particle collision detection is important for diverse simulating systems that involve spatial interactions between particles. Traditional parallelization strategy, which equally partitions the domain, can lead to skewed load distributions if the particles are not uniformly distributed. Moreover, the communication cost is relatively high when it comes to multilayer collision detection method. To solve this problem and to improve the parallel efficiency, this paper proposes an estimation-based domain decomposition method (ED-method) and an estimation-based multilayer method (EM-method) for homogeneous processors. Based on the performance estimation, the tasks are reassigned when it is necessary to balance the workload among different homogeneous processes. In the experiments, we compare these methods under different simulation conditions. Compared with the traditional method, the proposed method achieves better load balancing by taking advantage of features of the multilayer collision detection, and the results prove the excellence of the proposed method.

Keywords

Particle collision detection Parallel Performance estimation Multilayer 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 61272200, 10805019), the Program for Excellent Young Teachers in Higher Education of Guangdong, China (No. Yq2013012), the Fundamental Research Funds for the Central Universities (2015ZJ010), the Special Support Program of Guangdong Province (201528004), and the Pearl River Science & Technology Star Project (201610010046).

References

  1. 1.
    Allen, M.P.: Computer Simulation of Liquids. Clarendon Press, New York (1989)Google Scholar
  2. 2.
    Bonet, J., Peraire, J.: An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems. Int. J. Numer. Methods Eng. 31(1), 1–17 (1991)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ericson, C.: Real-time Collision Detection. CRC Press, Boca Raton (2004)Google Scholar
  4. 4.
    Feng, Y.T., Owen, D.R.J.: An augmented spatial digital tree algorithm for contact detection in computational mechanics. Int. J. Numer. Methods Eng. 55(2), 159–176 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Fernandes, D.T., Cheng, L.Y., Favero, E.H., Nishimoto, K.: A domain decomposition strategy for hybrid parallelization of moving particle semi-implicit MPS method for computer cluster. Cluster Comput. 18(4), 1363–1377 (2015)CrossRefGoogle Scholar
  6. 6.
    Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  8. 8.
    He, K., Dong, S., Zhou, Z.: Multigrid contact detection method. Phys. Rev. E. 75(3), 036710 (2007). doi: 10.1103/PhysRevE.75.036710
  9. 9.
    Kačianauskas, R., Maknickas, A., Kačeniauskas, A., Markauskas, D., Balevičius, R.: Parallel discrete element simulation of poly-dispersed granular material. Adv. Eng. Softw. 41(1), 52–63 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Maknickas, A., Kačeniauskas, A., Kačianauskas, R., Balevičius, R., Džiugys, A.: Parallel DEM software for simulation of granular media. Informatica 17(2), 207–224 (2006)zbMATHGoogle Scholar
  11. 11.
    Markauskas, D., Kačeniauskas, A.: The comparison of two domain repartitioning methods used for parallel discrete element computations of the hopper discharge. Adv. Eng. Softw. 84(C), 68–76 (2015)CrossRefGoogle Scholar
  12. 12.
    Mathias, E., Gu, L.: Hierarchical spatial hashing for real-time collision detection. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2007, pp. 61–70. IEEE Computer Society (2007)Google Scholar
  13. 13.
    Mazhar, H., Heyn, T., Negrut, D.: A scalable parallel method for large collision detection problems. Multibody Syst. Dynamics 26(1), 37–55 (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    Mio, H., Shimosaka, A., Shirakawa, Y., Hidaka, J.: Optimum cell condition for contact detection having a large particle size ratio in the discrete element method. J. Chem. Eng. Jpn. 39(4), 409–416 (2006)CrossRefGoogle Scholar
  15. 15.
    Moon, B., Saltz, J.: Adaptive runtime support for direct simulation Monte Carlo methods on distributed memory architectures. In: Proceedings of the Scalable High-Performance Computing Conference 1994, pp. 176–183. IEEE (1994)Google Scholar
  16. 16.
    Munjiza, A.A., Knight, E.E.: Computational Mechanics of Discontinua. Wiley, Chichester (2011)CrossRefGoogle Scholar
  17. 17.
    Ogarko, V., Luding, S.: A fast multilevel algorithm for contact detection of arbitrarily polydisperse objects. Comput. Phys. Commun. 183(4), 931–936 (2012)CrossRefGoogle Scholar
  18. 18.
    Park, S.W., Jun, C.W., Sohn, J.H., Lee, J.W.: Comparison of GPU-based numerous particles simulation and experiment. Trans. Korean Soc. Mech. Eng. A 38(7), 751–756 (2014)CrossRefGoogle Scholar
  19. 19.
    Peters, J.F., Kala, R., Maier, R.S.: A hierarchical search algorithm for discrete element method of greatly differing particle sizes. Eng. Comput. 26(6), 621–634 (2009)CrossRefGoogle Scholar
  20. 20.
    Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press, New York (2004)CrossRefzbMATHGoogle Scholar
  21. 21.
    Träff, J.L., Gropp, W.D., Thakur, R.: Self-consistent MPI performance guidelines. IEEE Trans. Parallel Distrib. Syst. 21(5), 698–709 (2010)CrossRefGoogle Scholar
  22. 22.
    Walther, J.H., Sbalzarini, I.F.: Large-scale parallel discrete element simulations of granular flow. Eng. Comput. 26(6), 688–697 (2009)CrossRefGoogle Scholar
  23. 23.
    Williams, J.R., O’Connor, R.: Discrete element simulation and the contact problem. Arch. Comput. Methods Eng. 6(4), 279–304 (1999)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zheng, J., An, X., Huang, M.: GPU-based parallel algorithm for particle contact detection and its application in self-compacting concrete flow simulations. Comput. Struct. 112, 193–204 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Shubo Chen
    • 1
  • Kejing He
    • 1
    Email author
  • Lingcong You
    • 1
  • Funan Lin
    • 1
  1. 1.School of Computer Science and EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations