Advertisement

Cluster Computing

, Volume 22, Supplement 4, pp 10095–10107 | Cite as

A novel approximate finite-time convergent guidance law with actuator fault

  • Wei WangEmail author
  • Yi Ji
  • Defu Lin
  • Zhongjiao Shi
  • Shiyao Lin
Article
  • 192 Downloads

Abstract

In this paper, a novel approximate finite-time convergent guidance law for missiles is presented to accurately intercept maneuvering targets when the actuators cannot perform as well as usual. First, the governing equations are proposed according to the relationship between missile and target at engagement phase, and a typical nonlinear mathematic model of actuator efficiency is built. Then, an adaptive multiple-input-multiple-output guidance law based on super-twisting algorithm is proposed to drive the line-of-sight angular rate to converge in a small region around zero in finite time. According to the proposed adaptive law, the information about maneuverability of target is not necessary, and the parameter drift problem is also addressed by dead-time control technique. Moreover, the proposed formulation is validated by means of the detailed stability analysis with strict Lyapunov function and simulation results.

Keywords

Missile guidance Actuator fault Approximate Finite-time convergence Adaptive super-twisting algorithm 

Notes

Compliance with ethical standards

Funding

This work was supported by the Natural Science Foundation of China (Grant No. 61172182).

References

  1. 1.
    Murtaugh, S.A., Criel, H.E.: Fundamentals of proportional navigation. IEEE Spectr. 3, 75–85 (1996)CrossRefGoogle Scholar
  2. 2.
    Budiyono, A., Rachman, H.: Proportional guidance and CDM control synthesis for a short-range homing surface-to-air missile. J. Aerosp. Eng. 25, 168–177 (2011)CrossRefGoogle Scholar
  3. 3.
    Nesline, F.W., Zarchan, P.: A new look at classical versus modern homing missile guidance. J. Guid. Control Dyn. 4, 78–85 (1981)CrossRefGoogle Scholar
  4. 4.
    Zarchan, P.: Tactical and Strategic Missile Guidance. American Institute of Aeronautics and Astronautics Publications, New York (1998)Google Scholar
  5. 5.
    Zhou, D., Sun, S., Teo, K.L.: Guidance laws with finite time convergence. J. Guid. Control Dyn. 32, 1838–1846 (2009)CrossRefGoogle Scholar
  6. 6.
    Yang, C.D., Chen, H.Y.: Nonlinear robust guidance law for homing missiles. J. Guid. Control Dyn. 21, 882–890 (1998)CrossRefGoogle Scholar
  7. 7.
    Yang, C.D., Chen, H.Y.: Three-dimensional nonlinear guidance law. Int. J. Robust Nonlinear Control 11, 109–129 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Liu, L.J., Shen, Y.: Three-dimension guidance law and capture region analysis. IEEE Trans. Aerosp. Electron. Syst. 48, 419–429 (2012)CrossRefGoogle Scholar
  9. 9.
    Yan, H., Ji, H.B.: Guidance laws based on input-to-state stability and high-gain observers. IEEE Trans. Aerosp. Electron. Syst. 48, 2518–2529 (2012)CrossRefGoogle Scholar
  10. 10.
    Babu, K.R., Sarma, I.G., Swamy, K.N.: Switched bias proportional navigation for homing guidance against highly maneuvering targets. J. Guid. Control Dyn. 17, 1357–1363 (1994)CrossRefGoogle Scholar
  11. 11.
    Brierley, S.D., Longchamp, R.: Application of sliding-mode control to air-air interception problem. IEEE Trans. Aerosp. Electron. Syst. 26, 306–325 (1990)CrossRefGoogle Scholar
  12. 12.
    Moon, J., Kim, K., Kim, Y.: Design of missile guidance law via variable structure control. J. Guid. Control Dyn. 24, 659–664 (2001)CrossRefGoogle Scholar
  13. 13.
    Zhou, D., Mu, C., Xu, W.: Adaptive sliding-mode guidance of a homing missile. J. Guid. Control Dyn. 22, 589–594 (1999)CrossRefGoogle Scholar
  14. 14.
    He, S., Lin, D.: Continuous robust guidance law for intercepting maneuvering targets. Jpn. Soc. Aeronaut. Space Sci. 58, 163–169 (2015)Google Scholar
  15. 15.
    He, S., Lin, D., Wang, J.: Continuous second-order sliding mode based impact angle guidance law. Aerosp. Sci. Technol. 41, 199–208 (2015)CrossRefGoogle Scholar
  16. 16.
    Phadke, S.B., Talole, S.E.: Sliding mode and inertial delay control based missile guidance. IEEE Trans. Aerosp. Electron. Syst. 48, 3331–3346 (2012)CrossRefGoogle Scholar
  17. 17.
    Zhang, Z., Li, S., Luo, S.: Terminal guidance laws of missile based on ISMC and NDOB with impact angle constraint. Aerosp. Sci. Technol. 31, 30–41 (2013)CrossRefGoogle Scholar
  18. 18.
    Zhu, Z., Xu, D., Liu, J., Xia, Y.: Missile guidance law based on extended state observer. IEEE Trans. Ind. Electron. 60, 5882–5891 (2013)CrossRefGoogle Scholar
  19. 19.
    Liang, Y.W., Ting, L.W., Lin, L.G.: Study of reliable control via an integral-type sliding mode control scheme. IEEE Trans. Ind. Electron. 59, 3062–3068 (2012)CrossRefGoogle Scholar
  20. 20.
    Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Ann. Rev. Control 32, 229–252 (2008)CrossRefGoogle Scholar
  21. 21.
    Zhu, Z., Xia, Y., Fu, M., Wang, S.: Fault tolerant control for missile guidance laws with finite-time convergence. In: 23rd Chinese Control and Decision Conference, Mianyang, China, pp. 23–25 May (2011)Google Scholar
  22. 22.
    Liao, F., Ji, H.: Guidance laws with input constraints and actuator failures. Asian J. Control 10, 1002–1199 (2015)Google Scholar
  23. 23.
    Cong, B.L., Chen, Z., Liu, X.D.: On adaptive sliding mode control without switching gain overestimation. Int. J. Robust Nonlinear Control 24, 515–531 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41, 1957–1964 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Levant, A.: Principles of 2-sliding mode design. Automatica 43, 576–586 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: Smooth second-order sliding modes: missile guidance application. Automatica 43, 1470–1477 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Shtessel, Y., Taleb, M., Plestan, F.: A novel adaptive-gain supertwisting sliding mode controller: methodology and application. Automatica 48, 759–769 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Utkin, V.I., Poznyak, A.S.: Adaptive sliding mode control with application to super-twist algorithm: equivalent control method. Automatica 49, 39–47 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Gonzalez, T., Moreno, J.A., Fridman, L.: Variable gain super-twisting sliding mode control. IEEE Trans. Autom. Control 57, 2100–2105 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Nagesh, I., Edwards, C.: A multivariable super-twisting sliding mode approach. Automatica 50, 984–988 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Garnell, P.: Guided Weapon Control System. Pergamon, New York (1980)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Wei Wang
    • 1
    Email author
  • Yi Ji
    • 1
  • Defu Lin
    • 1
  • Zhongjiao Shi
    • 1
  • Shiyao Lin
    • 1
  1. 1.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations