Cluster Computing

, Volume 21, Issue 2, pp 1289–1300 | Cite as

Bare-metal reservation for cloud: an analysis of the trade off between reactivity and energy efficiency

  • Marcos Dias de AssunçãoEmail author
  • Laurent Lefèvre


In this work, we investigate factors that can impact the elasticity of bare-metal resources. We analyse data from a real bare-metal deployment system to build a deployment time model, then use it to determine how long it takes to deliver requested resources to cloud users. Simulation results show that reservations can help reduce the time to deliver a provisioned cluster to its customer, by enabling machines to be started in advance or be kept powered on when there are impending reservations. Such an approach, when compared to strategies that switch-off idle resources, shows that similar energy savings can be achieved with much smaller impact on the time to deliver the provisioned clusters.



This research is partially supported by the CHIST-ERA STAR project. Some experiments presented in this paper were carried out using the Grid’5000 experimental testbed, being developed under the Inria ALADDIN development action with support from CNRS, RENATER and several Universities as well as other funding bodies (see


  1. 1.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: a Berkeley view of cloud computing. Tech. Report UCB/EECS-2009-28, Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley (2009)Google Scholar
  2. 2.
    Assuncao, M.D., Cardonha, C.H., Netto, M.A., Cunha, R.L.F.: Impact of user patience on auto-scaling resource capacity for cloud services. Future Gener. Comput. Syst. 55, 41–50 (2016). doi: 10.1016/j.future.2015.09.001 CrossRefGoogle Scholar
  3. 3.
    Assuncao, M.D., Lefevre, L., Rossigneux, F.: On the impact of advance reservations for energy-aware provisioning of bare-metal cloud resources. In: 12th International Conference on Network and Service Management (CNSM 2016) (2016)Google Scholar
  4. 4.
    Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez, F., Jeannot, E., Jégou, Y., Lantéri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P., Quetier, B., Richard, O., Talbi, E.G., Iréa, T.: Grid’5000: a large scale and highly reconfigurable experimental Grid testbed. Int. J. High Perform. Comput. Appl. 20(4), 481–494 (2006)Google Scholar
  5. 5.
    Capit, N., Costa, G.D., Georgiou, Y., Huard, G., Martin, C., Mounié, G., Neyron, P., Richard, O.: A batch scheduler with high level components. In: CCGrid’05, vol. 2, pp. 776–783. Washington, USA (2005)Google Scholar
  6. 6.
    Chase, J.S., Irwin, D.E., Grit, L.E., Moore, J.D., Sprenkle, S.E.: Dynamic virtual clusters in a Grid site manager. In: HPDC 2003, p. 90. Washington, USA (2003)Google Scholar
  7. 7.
    Elmroth, E., Tordsson, J.: A standards-based Grid resource brokering service supporting advance reservations, coallocation, and cross-Grid interoperability. CCPE 21(18), 2298–2335 (2009)Google Scholar
  8. 8.
    Farooq, U., Majumdar, S., Parsons, E.W.: Impact of laxity on scheduling with advance reservations in Grids. MASCOTS 2005, 319–322 (2005)Google Scholar
  9. 9.
    Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with the parallel workloads archive. JPDC (to appear)Google Scholar
  10. 10.
    Foster, I., Kesselman, C., Lee, C., Lindell, B., Nahrstedt, K., Roy, A.: A distributed resource management architecture that supports advance reservations and co-allocation. In: IWQoS’99, pp. 27–36. London, UK (1999)Google Scholar
  11. 11.
    Gandhi, A., Chen, Y., Gmach, D., Arlitt, M., Marwah, M.: Hybrid resource provisioning for minimizing data center SLA violations and power consumption. Sustain. Compet. 2, 91–104 (2012)Google Scholar
  12. 12.
    Iosup, A., Jan, M., Sonmez, O., Epema, D.: The characteristics and performance of groups of jobs in grids. In: A.M. Kermarrec, L. Bouge, T. Priol (eds.) Euro-Par 2007 Parallel Processing, LNCS, vol. 4641, pp. 382–393. Springer (2007)Google Scholar
  13. 13.
    Irwin, D., Chase, J., Grit, L., Yumerefendi, A., Becker, D., Yocum, K.G.: Sharing networked resources with brokered leases. In: USENIX Annual Technical Conference, pp. 199–212. Berkeley, USA (2006)Google Scholar
  14. 14.
    Jeanvoine, E., Sarzyniec, L., Nussbaum, L.: Kadeploy3: efficient and scalable operating system provisioning. USENIX; login 38(1), 38–44 (2013)Google Scholar
  15. 15.
    Lawson, B.G., Smirni, E.: Multiple-queue backfilling scheduling with priorities and reservations for parallel systems. In: JSSPP 2002. LNCS, pp. 72–87. Springer, London, UK (2002)Google Scholar
  16. 16.
    Marathe, A., Harris, R., Lowenthal, D.K., de Supinski, B.R., Rountree, B., Schulz, M., Yuan, X.: A comparative study of high-performance computing on the cloud. In: HPDC 2013, pp. 239–250. ACM, New York, USA (2013)Google Scholar
  17. 17.
    Margo, M.W., Yoshimoto, K., Kovatch, P., Andrews, P.: Impact of reservations on production job scheduling. JSSPP 2007. LNCS, vol. 4942, pp. 116–131. Springer, Berlin (2007)Google Scholar
  18. 18.
    Milojicic, D., Llorente, I.M., Montero, R.S.: OpenNebula: a cloud management tool. IEEE Internet Comput. 15(2), 11–14 (2011)CrossRefGoogle Scholar
  19. 19.
    Netto, M.A.S., Bubendorfer, K., Buyya, R.: SLA-Based advance reservations with flexible and adaptive time QoS parameters. In: 5th International Conference on Service Oriented Computing (ICSOC 2007), pp. 119–131. Springer, Berlin (2007)Google Scholar
  20. 20.
    Orgerie, A.C., Lefèvre, L., Gelas, J.P.: Save watts in your Grid: green strategies for energy-aware framework in large scale distributed systems. In: ICPADS’08, pp. 171–178. Melbourne, Australia (2008)Google Scholar
  21. 21.
    Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: A performance analysis of EC2 cloud computing services for scientific computing. In: Cloud Computing, LNCS, vol. 34, pp. 115–131. Springer (2010)Google Scholar
  22. 22.
    Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: Format + schema. Tech. report, Google Inc., Mountain View, USA (2011)Google Scholar
  23. 23.
    Röblitz, T., Rzadca, K.: On the placement of reservations into job schedules. In: Euro-Par 2006 Parallel Processing, LNCS, vol. 4128, pp. 198–210. Springer (2006)Google Scholar
  24. 24.
    Scott, D.W.: On optimal and data-based histograms. Biometrika 66(3), 605–610 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Smith, W., Foster, I., Taylor, V.: Scheduling with advanced reservations. In: 14th International Symposium on Parallel and Distributed Computing (IPDPS 2000), pp. 127–132. Cancun, Mexico (2000)Google Scholar
  26. 26.
    Snell, Q., Clement, M., Jackson, D., Gregory, C.: The performance impact of advance reservation meta-scheduling. In: JSSPP 2000, LNCS, vol. 1911, pp. 137–153. Springer (2000)Google Scholar
  27. 27.
    Sotomayor, B., Keahey, K., Foster, I.: Combining batch execution and leasing using virtual machines. In: HPDC 2008, pp. 87–96. New York, USA (2008)Google Scholar
  28. 28.
    Toosi, A.N., Vanmechelen, K., Ramamohanarao, K., Buyya, R.: Revenue maximization with optimal capacity control in infrastructure as a service cloud markets. IEEE Trans. Cloud Comput. 3(3), 261–274 (2015). doi: 10.1109/TCC.2014.2382119 CrossRefGoogle Scholar
  29. 29.
    Verma, A., Dasgupta, G., Nayak, T.K., De, P., Kothari, R.: Server workload analysis for power minimization using consolidation. In: USENIX Annual Technical Conference, p. 28. USENIX Association (2009)Google Scholar
  30. 30.
    Wang, G., Ng, T.S.E.: The impact of virtualization on network performance of Amazon EC2 data center. In: 29th Conference on Information Communications (INFOCOM’10), pp. 1163–1171. IEEE Press, Piscataway, USA (2010)Google Scholar
  31. 31.
    Wang, W., Niu, D., Liang, B., Li, B.: Dynamic cloud instance acquisition via iaas cloud brokerage. IEEE Trans. Parallel Distrib. Syst. 26(6), 1580–1593 (2015). doi: 10.1109/TPDS.2014.2326409 CrossRefGoogle Scholar
  32. 32.
    Wieczorek, M., Siddiqui, M., Villazon, A., Prodan, R., Fahringer, T.: Applying advance reservation to increase predictability of workflow execution on the Grid. In: 2nd IEEE International Conference on e-Science and Grid Computing (E-Science 2006), p. 82. Washington, USA (2006)Google Scholar
  33. 33.
    Younge, A.J., Henschel, R., Brown, J.T., von Laszewski, G., Qiu, J., Fox, G.C.: Analysis of virtualization technologies for high performance computing environments. In: IEEE International Conference on Cloud Computing (CLOUD 2011), pp. 9–16 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Inria Avalon, LIP Laboratory École Normale Supérieure de LyonUniversity of LyonLyonFrance

Personalised recommendations