Cluster Computing

, Volume 22, Supplement 4, pp 9941–9949 | Cite as

Fault diagnosis of a transformer based on polynomial neural networks

  • Ajin Zou
  • Rui DengEmail author
  • Qixiang Mei
  • Lang Zou


In view of the low accuracy of transformer fault diagnosis with traditional method, a novel multi-input and multi-output polynomial neural network (PNN) is proposed and used for transformer fault diagnosis. Firstly, single output PNN I classification model is trained and constructed according to the five kinds of characteristic gas corresponding four fault types (high-energy discharge, low-energy discharge, superheat and normal state) sample data, the transformer states are divided into normal state and abnormal state, then a transformer fault diagnosis model based on multiple output PNN II is built to aim at the three fault types such as high-energy discharge, low-energy discharge and thermal heating. Simulation and test results show that accuracy can reach 100% by using the presented model, which has excellent anti-interference performance.


Neural network Polynomial Transformer Fault diagnosis 



The authors would like to thank the National Natural Science Foundation of China (Nos. 61173036, 61272534), the “Climbing Plan” Special Fund Project of Guangdong Province (No. pdjh2017a0233) and the Science and Technology Project of Guangdong Province (No. 2016A010101028) for financial supports.


  1. 1.
    Pandya, A.A., Parekh, B.R.: Interpretation of sweep frequency response analysis (SFRA) traces for the open circuit and short circuit winding fault damages of the power transformer. Int. J. Electr. Power Energy Syst. 62(11), 890–896 (2014)CrossRefGoogle Scholar
  2. 2.
    Souahlia, S., Bacha, K., Chaari, A.: MLP neural network-based decision for power transformers fault diagnosis using an improved combination of Rogers and Doernenburg ratios DGA. Int. J. Electr. Power Energy Syst. 43(1), 1346–1353 (2012)CrossRefGoogle Scholar
  3. 3.
    Sun, Y.J., Zhang, S., Miao, C.X., et al.: Improved BP neural network for transformer fault diagnosis. J. China Univ. Min. Technol. 17(1), 138–142 (2007)CrossRefGoogle Scholar
  4. 4.
    Shao, K.: A novel method of transformer fault diagnosis based on extension theory and information fusion in wireless sensor networks. Energy Procedia 12(12), 669–678 (2011)CrossRefGoogle Scholar
  5. 5.
    Han, H., Wang, H.J., Dong, X.C.: Transformer fault Diagnosis based on feature selection and parameter optimization. Energy Procedia 12(39), 662–668 (2011)CrossRefGoogle Scholar
  6. 6.
    Zhang, Y.X., Bai, J., Zhang, S.P.: Fault diagnosis of power transformer based on immune particle swarm and BP neural network. J. Beihua Univ. (Nat. Sci.) 15(2), 269–273 (2014)Google Scholar
  7. 7.
    Fei, S.W., Miao, Y.B., Liu, C.L., et al.: Fault diagnosis of transformer based on particle swarm optimization-based support vector machine. High Volt. Eng. 35(3), 509–513 (2009)Google Scholar
  8. 8.
    Al-Janabi, S., Rawat, S., Patel, A., et al.: Design and evaluation of a hybrid system for detection and prediction of faults in electrical transformers. Int. J. Electr. Power Energy Syst. 67(67), 324–335 (2015)CrossRefGoogle Scholar
  9. 9.
    Sheng, W.F., Xiao, B.Z.: Fault diagnosis of power transformer based on support vector machine with genetic algorithm. Expert Syst. Appl. 36(8), 11352–11357 (2009)CrossRefGoogle Scholar
  10. 10.
    Mohamed, E.A., Abdelaziz, A.Y., Mostafa, A.S.: A neural network-based scheme for fault diagnosis of power transformers. Electr. Power Syst. Res. 75(1), 29–39 (2005)CrossRefGoogle Scholar
  11. 11.
    Hung, C.P., Wang, M.H.: Diagnosis of incipient faults in power transformers using CMAC neural network approach. Electr. Power Syst. Res. 71(1), 235–244 (2004)CrossRefGoogle Scholar
  12. 12.
    Yadaiah, N., Ravi, N.: Internal fault detection techniques for power transformers. Appl. Soft Comput. 11(8), 5259–5269 (2011)CrossRefGoogle Scholar
  13. 13.
    Sun, H.C., Huang, Y.C., Huang, C.M.: Fault diagnosis of power transformers using computational intelligence: a review. Energy Procedia 14, 1226–1231 (2012)CrossRefGoogle Scholar
  14. 14.
    Chen, A.P., Lin, C.C.: Fuzzy approaches for fault diagnosis of transformers. Fuzzy Sets Syst. 118(1), 139–151 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Abu-Siada, A., Hmood, S.: A new fuzzy logic approach to identify power transformer criticality using dissolved gas-in-oil analysis. Electr. Power Energy Syst. 67, 401–408 (2015)CrossRefGoogle Scholar
  16. 16.
    Bacha, K., Souahlia, S., Gossa, M.: Power transformer fault diagnosis based on dissolved gas analysis by support vector machine. Electr. Power Syst. Res. 83(1), 73–79 (2012)CrossRefGoogle Scholar
  17. 17.
    Ganyun, L.V., Cheng, H.Z., Zhai, H.B., et al.: Fault diagnosis of power transformer based on multi-layer SVM classifier. Electr. Power Syst. Res. 74(1), 1–7 (2005)CrossRefGoogle Scholar
  18. 18.
    Zhang, J., Zou, A.J., Tong, T.S.: A neural network based on polynomial basis functions. 1995 Conference Paper. Establishment of Intelligent Automation Committee, vol. 1, pp. 287–292. Intelligent Automation Association of China, Beijing (1995)Google Scholar
  19. 19.
    Zhang, J., Zou, A.J., Tong, T.S.: A neural network based on polynomial basis functions. J. Hunan Univ. 44, 84–89 (1996)Google Scholar
  20. 20.
    Xiao, X.C., Jiang, X.H., Zhang, Y.N.: Implicit surface reconstruction from point cloud data based on generalized polynomials neural network. J. Comput. Appl. 29(8), 2043–2045, 2064 (2009)Google Scholar
  21. 21.
    Patra, J.C., Van den Bos, A.: Modeling of an intelligent pressure sensor using functional link artificial neural networks. ISA Trans. 39(1), 15–27 (2000)CrossRefGoogle Scholar
  22. 22.
    Zou, A.J., Shen, H.Y.: Identifier based on Chebyshev neural network. Coal Mine Autom. 4, 10–11 (1998)Google Scholar
  23. 23.
    Akritas, P., Antoniou, I., Ivanov, V.V.: Identification and prediction of discrete chaotic maps applying a Chebyshev neural network. Chaos Solitons Fractals 11(1), 337–344 (2000)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Patra, J.C., Kot, A.C.: Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Trans. Syst. Man Cybern. B 32(4), 505–511 (2002)CrossRefGoogle Scholar
  25. 25.
    Zou, A.J., Wu, W., Li, R.F., et al.: Construction of the encryption matrix based on Chebyshev chaotic neural networks. J. Electron. (China) 29, 248–253 (2012)CrossRefGoogle Scholar
  26. 26.
    Zou, A.J., Shen, J.Z.: A neural network model structure study based on Fourier. Nat. Sci. J. Xiangtan Univ. 23(2), 23–26 (2001)zbMATHGoogle Scholar
  27. 27.
    Zou, A.J., Luo, Y.X.: Modeling and stock prediction based on Legender neural networks. Comput. Simul. 22(11), 241–242, 246 (2005)Google Scholar
  28. 28.
    Zou, A.J., Zhang, Y.N., Xiao, X.C.: An asynchronous encryption algorithm based on Hermite chaotic neural networks. CAAI Trans. Intell. Syst. 4(5), 458–462 (2009)Google Scholar
  29. 29.
    Zhang, Y.N., Liu, J.R., Yin, Y.H., et al.: Weights and structure determination of multi-input Laguerre orthogonal polynomial feed-forward neural network. Comput. Sci. 39(12), 249–251, 277 (2012)Google Scholar
  30. 30.
    Dhahri, H., Alimi, A.M., Abraham, A.: Hierarchical multi-dimensional differential evolution for the design of beta basis function neural network. Neurocomputing 97(1), 131–140 (2012)CrossRefGoogle Scholar
  31. 31.
    Li, C., Shi, D., Zou, Y.P.: A feedback neural network with weights of sinusoidal functions. Acta Phys. Sin. 61(7), 070701–070708 (2012)Google Scholar
  32. 32.
    Nan, D., Liu, L.J.: Relationship between basis-function neural networks and reproducing kernel function. J. Beijing Univ. Technol. 40(9), 1428–1431 (2014)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Xiao, X.C., Zhang, Y.N., Jiang, X.H., et al.: Approximation-performance and global-convergence analysis of basis-function feedforward neural network. Mod. Comput. 2, 4–8 (2009)Google Scholar
  34. 34.
    Zhang, Y.N., Liu, W., Yi, C., et al.: Weights immediate determination for feed-forward neural network with Legendre orthogonal basis function. J. Dalian Marit. Univ. 34(1), 32–36 (2008)Google Scholar
  35. 35.
    Zhang, Y.N., Li, W., Cai, B.H., et al.: A Chebyshev orthogonal basis neural network with direct weight determination. Comput. Simul. 26(1), 157–161 (2009)Google Scholar
  36. 36.
    Zhang, Y.N., Yang, Y.W., Xiao, X.C., et al.: Weights direct determination of a spline neural network. Syst. Eng. Electron. 31(38), 2685–2688 (2009)Google Scholar
  37. 37.
    Zhang, Y.N., Chen, Y.L., Jiang, X.H., et al.: Weights-directly-determined and structure-adaptively-tuned neural network based on Chebyshev basis functions. Comput. Sci. 36(6), 210–213 (2009)Google Scholar
  38. 38.
    Zhang, Y.N., Qu, L., Chen, J.W., et al.: Weights and structure determination method of multiple-input sigmoid activation function neural network. Appl. Res. Comput. 29(11), 4113–4116, 4151 (2012)Google Scholar
  39. 39.
    Zhang, Y.N., Lao, W.C., Yu, X.T., et al.: Weights and structure determination of two-input power-activation feed-forward neural network. Comput. Eng. Appl. 48(15), 102–106 (2012)Google Scholar
  40. 40.
    Xing, Y.K., Shi, Y., Mou, C.: Multivariate Chebyshev neural network and quick learning algorithm. Comput. Eng. Appl. 49(13), 36–39 (2013)Google Scholar
  41. 41.
    Tian, Q.C., Tian, M.X., Yang, X.F.: Weights-direct-determination for image restoration of basis function neural network. Comput. Eng. Appl. 49(8), 178–181 (2013)Google Scholar
  42. 42.
    Zhang, Y.N., Luo, F.H., Chen, J.H.: Weights and structure determination of 3-input Bernoulli polynomial neural net. Comput. Eng. Sci. 35(5), 142–148 (2013)Google Scholar
  43. 43.
    Yang, W.G.: Weights direct determination of triangular fuzzy feed-forward neural network. Acta Sci. Nat. Univ. Sunyatseni 2(2), 33–37 (2013)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Zou, A.J., Zhang, Y.N.: Basis Function Neural Network and Application, pp. 106–109. Sun Yat-sen University Press, Guangzhou (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Electronic and Information Engineering CollegeGuangdong Ocean UniversityZhanjiangChina
  2. 2.Mathematics and Computer CollegeGuangdong Ocean UniversityZhanjiangChina
  3. 3.School of Mathematical SciencesNankai UniversityTianjinChina

Personalised recommendations