Advertisement

Cluster Computing

, Volume 21, Issue 1, pp 251–263 | Cite as

HD video transmission on UWB networks using H.265 encoder and anfis rate controller

  • S. GnanavelEmail author
  • S. Ramakrishnan
Article
  • 88 Downloads

Abstract

Wireless personal area networks (WPAN) has become a part of every home. Its easiness to install and accessibility has pulled in a lot of advantages to various technologies. Applications with low speed or high speed, WPAN can fit any kind into it. As we are heading towards high definition videos and other high end images and video communications, WPAN suffers in delivering quality output. Hence to resolve this challenge ultra wide band (UWB) technology is merged with WPAN to mould the existing loop holes and helps in resulting with great quality output with excellent speed and ease to access. UWB unique characteristics like high-speed data transmission, low cost, low power consumption and short-range made it a choice for delivering high end images and videos in WPAN topology. In this proposed research work we will be using UWB along with in-loop filtering technique to eradicate the blocking effect in the output. Probabilistic neural networks is infused along with in-loop filtering for the classification purpose called the IFPNN. The major purpose of this research is to experiment H.265 encoder and the application of ANFIS controller. The novel method consists of three important stages which include transmission module, control module and receiver module. The simulation results are derived from the Matlab with BER and MSE as evaluation metrics.

Keywords

UWB PNN WPAN HD In-loop filtering H.265 encoder ANFIS controller BER MSE 

References

  1. 1.
    Everett, E., Duarte, M., Dick, C., Sabharwal, A.: Empowering full duplex wireless communication by exploiting directional diversity. In: Proceedings of Asilomar Conference on Signals, Systems and Computers, IEEE (2011)Google Scholar
  2. 2.
    Everett, E., Sahai, A., Sabharwal, A.: Passive self-interference suppression for full-duplex infrastructure nodes. In: IEEE Transactions on Wireless Communications, to be published. arXiv preprint arXiv:1302.2185
  3. 3.
    Beasley, P., Stove, A., Reits, B., As, B.: Solving the problems of a single antenna frequency modulated CW radar. In: IEEE International Radar Conference (1990)Google Scholar
  4. 4.
    Cryan, M., Hall, P., Tsang, S., Sha, J.: Integrated active antenna with full duplex operation. IEEE Trans. Microwave Theory Techn. 45(10), 1742–1748 (1997)CrossRefGoogle Scholar
  5. 5.
    Gnanavel, S., Ramakrishnan, S., Mohankumar, N.: Wireless video transmission over UWB channel ising fuzzy based rate control technique. J. Theor. Appl. Inf. Technol. 60(3), 12–23 (2014)Google Scholar
  6. 6.
    Lu, S., Wang, Y., Erkip, E.: Power Efficient H.263 video transmission over wireless channel. In: Electrical and Computer Engineering, Polytechnic University, Brooklyn, New York (2002)Google Scholar
  7. 7.
    Miguel, V., Cabrera, J., Jaureguizar, F., Garcıa,N.: A wireless video transmission control approach through stochastic dynamic programming. In: IEEE International Conference on Image Processing (ICIP) (2010)Google Scholar
  8. 8.
    Pescador, F., Chavarrias, M., Garrido, M., Juarez, E., Sanz, C.: Complexity analysis of an HEVC decoder based on a digital signal processor. IEEE Trans. Consum. Electron. 59(2), 391–399 (2013)CrossRefGoogle Scholar
  9. 9.
    Hautala, I., Boutellier, J., Hannuksela, J.: Programmable lowpower implementation of the HEVC adaptive loop filter. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2664–2668 (2013)Google Scholar
  10. 10.
    Park, W.S., Kim, M.: CNN-based in-loop filtering for coding efficiency improvement. In: Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 978-1-5090-0746-2/16 (2016) IEEEGoogle Scholar
  11. 11.
    Reuben, A.: Farrugia and Carl James Debono. In: Resilient Digital Video Transmission over Wireless Channels using Pixel-LevelArtifact Detection Mechanisms. ISBN 978-953-7619-70-1, February 1, 2010 under CC BY-NC-SAGoogle Scholar
  12. 12.
    Daneshi, M.: Distributed reservation algorithms for video streaming over wiMedia UWB Networks. In: IEEE Conference on Consumer Communications and Networking (2010)Google Scholar
  13. 13.
    Chen, S., Beach, M.A., McGeehan, J.P.: Division-free duplex for wireless applications. IEEE Electron. Lett. 34, 147–148 (1998)CrossRefGoogle Scholar
  14. 14.
    Anderson, C., Krishnamoorthy, S., Ranson, C., Lemon, T., Newhall, W., Kummetz, T., Reed, J.: Antenna isolation, wideband multipath propagation measurements, and interference mitigation for on frequency repeaters. In: Proceedings of IEEE Southeast Conference pp. 110–114 (2004)Google Scholar
  15. 15.
    Kim, J.G., Ko, S., Jeon, S., Park, J.W., Hong, S.: Balanced topology to cancel Tx leakage in CW radar. IEEE Microwave Wirel. Compon. Lett. 14, 443–445 (2004)CrossRefGoogle Scholar
  16. 16.
    Kim, W.K., Lee, M.Q., Kim, J.H., Lim, H.S., Yu, J.W., Jang, B.J., Park, J.S.: A passive circulator for RFID application with high isolation using a directional coupler. In: 36th European Microwave Conference, pp. 196–199, IEEE (2006)Google Scholar
  17. 17.
    Oestges, C., Paulraj, A.J.: Beneficial impact of channel correlations on MIMO capacity. IEE Electron. Lett. 40(10), 606–608 (2004)CrossRefGoogle Scholar
  18. 18.
    Oestges, C., Clerckx, B., Vanhoenacker-Janvier, D., Paulraj, A.J.: Impact of diagonal correlations on MIMO capacity: Application to geometrical scattering models. Proceedings IEEE Vehicular Technology Conf. VTC’03, vol. 1, pp. 394–398. Orlando, FL (2003)Google Scholar
  19. 19.
    Lebrun, G., Faulkner, M., Shafi, M., Smith, P.J.: MIMO Ricean channel capacity. In: Proceedings IEEE International Conference Communications (ICC’04), pp. 2939–2943. Paris, France (2004)Google Scholar
  20. 20.
    Lozano, A., Tulino, A.M., Verdú, S.: High-SNR power offset in multi-antenna communication. In: Proceedings IEEE International Symposium Information Theory (ISIT’04), p. 288. Chicago, IL (2004)Google Scholar
  21. 21.
    Welelaw, Y.L., Eneyew, A.: Performance evaluation of receivers for ultra-wideband wireless communication systems. In: IEEE Transactions on communications (2012)Google Scholar
  22. 22.
    Lozano, A., Tulino, A.M.: Capacity of multiple-transmit multiple receive antenna architectures. IEEE Trans. Inf. Theory 48(12), 3117–3128 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shamai, S., Verdú, S.: The impact of frequency-flat fading on the spectral efficiency of CDMA. IEEE Trans. Inf. Theory 47(5), 1302–1327 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tulino, A.M., Verdú, S., Lozano, A.: Capacity of antenna arrays with space, polarization and pattern diversity. In: Proceedings IEEE Information Theory Workshop (ITW’03), pp. 324–327. Paris, France (2003)Google Scholar
  25. 25.
    Hautala, I., Boutellier, J., Hannuksela, J., Silven, O.: Programmable low-power multicore coprocessor architecture for HEVC/H.265 in-loop filtering. IEEE Trans. Circuits Syst. Video Technol. 25(7), 1217–1230 (2015)CrossRefGoogle Scholar
  26. 26.
    Khater, J.: Professor Gregory Yovanof athens. NS-2 Simulation Based Study of E2E Video Streaming Over Ultra-Wideband (UWB) Wireless Mesh Networks (2005/2006)Google Scholar
  27. 27.
    Kim, C.Y., Kim, J.G., Hong, S.: A quadrature radar topology with TX leakage canceller for 24-GHz radar applications. IEEE Trans. Microwave Theory Techn. 55(7), 1438–1444 (2007)CrossRefGoogle Scholar
  28. 28.
    Bliss, D.W., Parker, P.A., Margetts, A.R.: Simultaneous transmission and reception for improved wireless network performance. In: Conference Proceedings of the IEEE Statistical Signal Processing Workshop (2007)Google Scholar
  29. 29.
    Chizhik, D., Foschini, G.J., Gans, M.J., Valenzuela, R.A.: Keyholes, correlations and capacities of multi-element transmit and receive antennas. IEEE Trans. Wireless Commun. 1(2), 361–368 (2002)CrossRefGoogle Scholar
  30. 30.
    Gesbert, D., Bolcskei, H., Gore, D., Paulraj, A.J.: MIMO wireless channels: Capacity and performance prediction. In: Proceedings IEEE GLOBECOM’00, vol. 2, pp. 1083–1088. San Francisco, CA (2000)Google Scholar
  31. 31.
    Ruby, R.A.: Performance evaluation of wimedia UWB MAC protocols. Bangladesh University of Engineering & Technology (2004)Google Scholar
  32. 32.
    Somekh, O., Zaidel, B.M., Shamai (Shitz), S.: Spectral efficiency of joint multiple cell-site processors for randomly spread DS-CDMA systems. In: Proceedings IEEE International Symposium Information Theory (ISIT’04), p. 278. Chicago, IL (2004)Google Scholar
  33. 33.
    Lee, C.H., Lee, J.H., Kwak, Y.W., Kim, Y.H., Kim, S.C.: The realization of full duplex relay and sum rate analysis in multiuser mimo relay channel. In: Vehicular Technology Conference Fall (VTC 2010- Fall), 2010 IEEE 72nd, pp. 1–5 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Faculty of computer science and engineeringAnna UniversityChennaiIndia
  2. 2.Sakthi Mariamman Engineering CollegeChennaiIndia

Personalised recommendations