Advertisement

Cluster Computing

, Volume 21, Issue 1, pp 213–227 | Cite as

Energy efficient node selection algorithm based on node performance index and random waypoint mobility model in internet of vehicles

  • M. K. PriyanEmail author
  • G. Usha Devi
Article

Abstract

Internet of vehicles (IoV) is an improved version of internet of things to resolve a number of issues in urban traffic environment. In this paper IoV technology is used to select the best ambulance based on a novel node selection algorithm. The proposed IoT healthcare monitoring system consists of number of mobile doctors, patient and mobile ambulance. Performance rank (PR) index is calculated for each mobile ambulance based on the medical capacity (b) of the mobile ambulance, the number of patients currently using the mobile ambulance (n), and the Euclidean distance from a neighboring mobile ambulance. The minimum PR index is considered as best ambulance to provide a service to the patient. Random waypoint mobility model is used to simulate the proposed IoT based healthcare monitoring system. The proposed energy efficient node selection algorithm is compared with various node selection algorithms such as cluster based routing protocol, workload-aware channel assignment algorithm and scenario-based clustering algorithm for performance evaluation. The packet delivery fraction, normalized routing load and average end-to-end delay are calculated to evaluate the performance of the proposed energy efficient node selection algorithm. We have used NS-2 simulator for the node simulation to show the performance of the energy efficient node selection framework. Experimental results prove that the efficiency of the proposed energy efficient node selection algorithm in IoT healthcare environment.

Keywords

Internet of things Healthcare Mobile ambulance Euclidean distance NS-2 simulator 

References

  1. 1.
    Lorincz, K., Malan, D.J., Fulford-Jones, T.R., Nawoj, A., Clavel, A., Shnayder, V., Moulton, S.: Sensor networks for emergency response: challenges and opportunities. IEEE Pervasive Comput. 3(4), 16–23 (2004)CrossRefGoogle Scholar
  2. 2.
    Tracey, D., Sreenan, C.: A holistic architecture for the internet of things, sensing services and big data. In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (pp. 546–553). IEEE (2013)Google Scholar
  3. 3.
    Mavromoustakis, C.X.: Mitigating file-sharing misbehavior with movement synchronization to increase end-to-end availability for delay sensitive streams in vehicular P2P devices. Int. J. Commun. Syst. 26(12), 1599–1616 (2013)CrossRefGoogle Scholar
  4. 4.
    Tao, F., Zuo, Y., Da Xu, L., Zhang, L.: IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Trans. Ind. Inform. 10(2), 1547–1557 (2014)CrossRefGoogle Scholar
  5. 5.
    Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “big data” on cloud computing: review and open research issues. Inform. Syst. 47, 98–115 (2015)CrossRefGoogle Scholar
  6. 6.
    Shafiq, M.Z., Ji, L., Liu, A.X., Pang, J., Wang, J.: A first look at cellular machine-to-machine traffic: large scale measurement and characterization. ACM SIGMETRICS Perform. Eval. Rev. 40(1), 65–76 (2012)CrossRefGoogle Scholar
  7. 7.
    Kryftis, Y., Mavromoustakis, C.X., Mastorakis, G., Pallis, E., Batalla, J.M., Skourletopoulos, G. Resource usage prediction for optimal and balanced provision of multimedia services. In: 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) (pp. 255–259). IEEE (2014)Google Scholar
  8. 8.
    Mavromoustakis, C.X., Karatza, H.D.: Embedded socio-oriented model for end-to-end reliable stream schedules by using collaborative outsourcing in MP2P systems. Comput. J. 54, 1235–1247 (2011)CrossRefGoogle Scholar
  9. 9.
    Nambiar, R., Bhardwaj, R., Sethi, A., Vargheese, R.: A look at challenges and opportunities of big data analytics in healthcare. In: 2013 IEEE International Conference on Big Data (pp. 17–22). IEEE (2013)Google Scholar
  10. 10.
    Botta, A., De Donato, W., Persico, V., Pescapé, A.: On the integration of cloud computing and internet of things. In: 2014 International Conference on Future Internet of Things and Cloud (FiCloud) (pp. 23–30). IEEE (2014)Google Scholar
  11. 11.
    Biswas, A.R., Giaffreda, R.: IoT and cloud convergence: opportunities and challenges. In: 2014 IEEE World Forum on Internet of Things (WF-IoT) (pp. 375–376). IEEE (2014)Google Scholar
  12. 12.
    Wang, L., Ranjan, R.: Processing distributed internet of things data in clouds. IEEE Cloud Comput. 2(1), 76–80 (2015)CrossRefGoogle Scholar
  13. 13.
    Jiang, L., Da Xu, L., Cai, H., Jiang, Z., Bu, F., Xu, B.: An IoT-oriented data storage framework in cloud computing platform. IEEE Trans. Ind. Inform. 10(2), 1443–1451 (2014)CrossRefGoogle Scholar
  14. 14.
    Barnaghi, P., Sheth, A., Henson, C.: From data to actionable knowledge: big data challenges in the web of things [guest editors’ introduction]. IEEE Intell. Syst. 28(6), 6–11 (2013)CrossRefGoogle Scholar
  15. 15.
    Mongay Batalla, J., Gajewski, M., Latoszek, W., Krawiec, P., Mavromoustakis, C.X., Mastorakis, G.: ID-based service-oriented communications for unified access to IoT. Comput. Electric. Eng. 52(C), 98–113 (2016)CrossRefGoogle Scholar
  16. 16.
    Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M.: Modeling and optimization in science and technologies. In: Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M. (eds.) Internet of Things (IoT) in 5G Mobile Technologies, pp. 56–93. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  17. 17.
    Hadjioannou, V., Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M., Kopanakis, I., Perakakis, E., Panagiotakis, S.: Security in Smart Grids and Smart Spaces for Smooth IoT Deployment in 5G. In: Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M. (eds.) Internet of Things (IoT) in 5G Mobile Technologies, vol. 8, p. 371. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  18. 18.
    Goleva, R., Stainov, R., Wagenknecht-Dimitrova, D., Mirtchev, S., Atamian, D., Mavromoustakis, C.X., et al.: Data and traffic models in 5G network. In: Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M. (eds.) Internet of Things (IoT) in 5G Mobile Technologies, p. 485. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  19. 19.
    Batalla, J.M., Mavromoustakis, C.X., Mastorakis, G., Sienkiewicz, K.: On the track of 5G radio access network for IoT wireless spectrum sharing in device positioning applications. In: Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M. (eds.) Internet of Things (IoT) in 5G Mobile Technologies, pp. 25–35. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  20. 20.
    Vakintis, I., Panagiotakis, S., Mastorakis, G., Mavromoustakis, C.X.: Evaluation of a Web crowd-sensing IoT ecosystem providing Big data analysis. In: Pop, F., et al. (eds.) Resource Management for Big Data Platforms, pp. 461–488. Springer International Publishing, Cham (2016)Google Scholar
  21. 21.
    Booysen, M.J., Gilmore, J.S., Zeadally, S., Van Rooyen, G.J.: Machine-to-machine (M2M) communications in vehicular. KSII Trans. Internet Inform. Syst. 6(2), 529–546 (2012)Google Scholar
  22. 22.
    Verma, P.K., Verma, R., Prakash, A., Agrawal, A., Naik, K., Tripathi, R., Abogharaf, A.: Machine-to-machine (M2M) communications: a survey. J. Netw. Comput. Appl. 66, 83–105 (2016)CrossRefGoogle Scholar
  23. 23.
    Soorki, M.N., Mozaffari, M., Saad, W., Manshaei, M.H., Saidi, H.: Resource allocation for machine-to-machine communications with unmanned aerial vehicles. (2016). arXiv:1608.07632
  24. 24.
    Sinha, R., Narula, A., Grundy, J.: Parametric statecharts: designing flexible IoT apps: deploying android m-health apps in dynamic smart-homes. In: Proceedings of the Australasian Computer Science Week Multiconference (p. 28). ACM, New York (2017)Google Scholar
  25. 25.
    Azimi, I., Anzanpour, A., Rahmani, A.M., Liljeberg, P., Tenhunen, H.: Self-aware early warning score system for iot-based personalized healthcare. In: Giokas, K., Bokor, L., Hopfgartner, F. (eds.) eHealth 360\(^{\circ }\), pp. 49–55. Springer International Publishing, Cham (2017)Google Scholar
  26. 26.
    Dey, N., Ashour, A.S., Bhatt, C.: Internet of things and big data technologies for next generation healthcare. In: Bhatt, C., Dey, N., Ashour, A.S. (eds.) Internet of Things Driven Connected Healthcare, pp. 3–12. Springer International Publishing, Cham (2017)Google Scholar
  27. 27.
    Manogaran, G., Lopez, D., Thota, C., Abbas, K.M., Pyne, S., Sundarasekar, R.: Big data analytics in healthcare internet of things. In: Qudrat-Ullah, H., Tsasis, P. (eds.) Innovative Healthcare Systems for the 21st Century. Springer International Publishing, Cham (2017)Google Scholar
  28. 28.
    Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: Codeblue: an ad hoc sensor network infrastructure for emergency medical care. In: International workshop on wearable and implantable body sensor networks, vol. 5 (2004)Google Scholar
  29. 29.
    Kumar, P., Lee, H.J.: Security issues in healthcare applications using wireless medical sensor networks: a survey. Sensors 12(1), 55–91 (2011)CrossRefGoogle Scholar
  30. 30.
    Ng, J.W., Lo, B.P., Wells, O., Sloman, M., Peters, N., Darzi, A., Toumazou, C., Yang, G.Z.: Ubiquitous monitoring environment for wearable and implantable sensors (UbiMon). In: International Conference on Ubiquitous Computing (Ubicomp) (2004)Google Scholar
  31. 31.
    Ning, H., Wang, Z.: Future internet of things architecture: like mankind neural system or social organization framework? IEEE Commun. Lett. 15(4), 461–463 (2011)CrossRefGoogle Scholar
  32. 32.
    Chakravorty, R.: A programmable service architecture for mobile medical care. In: Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, 2006.PerCom Workshops (p. 5). IEEE (2006)Google Scholar
  33. 33.
    Blum, J.M., Magill, E.H.: The design and evaluation of personalised ambient mental health monitors. In: 2010 7th IEEE Consumer Communications and Networking Conference (CCNC) (pp. 1–5). IEEE (2010)Google Scholar
  34. 34.
    Doppler, K., Rinne, M., Wijting, C., Ribeiro, C.B., Hugl, K.: Device-to-device communication as an underlay to LTE-advanced networks. IEEE Commun. Mag. 47(12), 42–49 (2009)CrossRefGoogle Scholar
  35. 35.
    Jänis, P., Yu, C.H., Doppler, K., Ribeiro, C., Wijting, C., Hugl, K., Koivunen, V.: Device-to-device communication underlaying cellular communications systems. Int. J. Commun. Netw. Syst. Sci. 2(3), 169 (2009)Google Scholar
  36. 36.
    Tehrani, M.N., Uysal, M., Yanikomeroglu, H.: Device-to-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Commun. Mag. 52(5), 86–92 (2014)CrossRefGoogle Scholar
  37. 37.
    Baoyun, W.: Review on internet of things. J. Electron. Meas. Instrum. 23(12), 1–7 (2009)Google Scholar
  38. 38.
    Manogaran, G., Thota, C., Lopez, D., Sundarasekar, R.: Big data security intelligence for healthcare industry 4.0. In: Cybersecurity for Industry 4.0: Analysis for Design and Manufacturing, vol. 103 (2017)Google Scholar
  39. 39.
    Hu, J.X., Chen, C.L., Fan, C.L., Wang, K.H.: An intelligent and secure health monitoring scheme using IoT sensor based on cloud computing. J. Sensors (2017). doi: 10.1155/2017/3734764
  40. 40.
    Manogaran, G., Lopez, D.: Spatial cumulative sum algorithm with big data analytics for climate change detection. Comput. Electric. Eng. (2017). doi: 10.1016/j.compeleceng.2017.04.006
  41. 41.
    Baktha, K., Dev, M., Gupta, H., Agarwal, A., Balamurugan, B.: Social network analysis in healthcare. In: Bhatt, C., Dey, N., Ashour, A.S. (eds.) Internet of Things and Big Data Technologies for Next Generation Healthcare, pp. 309–334. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  42. 42.
    Park, S.J., Subramaniyam, M., Kim, S.E., Hong, S., Lee, J.H., Jo, C.M., Seo, Y.: Development of the elderly healthcare monitoring system with IoT. In: Duffy, V., Lightner, N. (eds.) Advances in Human Factors and Ergonomics in Healthcare, pp. 309–315. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  43. 43.
    Manogaran, G., Thota, C., Lopez, D., Vijayakumar, V., Abbas, K.M., Sundarsekar, R.: Big data knowledge system in healthcare. In: Bhatt, C., Dey, N., Ashour, A.S. (eds.) Internet of Things and Big Data Technologies for Next Generation Healthcare, pp. 133–157. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Information Technology and EngineeringVIT UniversityVelloreIndia

Personalised recommendations